Genetically modified houseplant can efficiently detoxify indoor air

Our homes are supposed to be safe havens from the outside world. However, studies have shown that household air is more polluted than either office or school air, exposing children and home workers to higher levels of carcinogens than the general population. Now, researchers have made a genetically modified houseplant that can efficiently remove at least two toxins from the air. They report their results in ACS' journal Environmental Science & Technology.

Indoor air often contains volatile organic compounds such as formaldehyde, benzene and chloroform. These toxins come from many sources, including cooking, showering, furniture and smoking. House plants can remove some toxins from the air, but they aren't very efficient: A homeowner would need more than 20 plants to remove formaldehyde from a typical room, researchers estimate. Stuart Strand and colleagues wondered if introducing a mammalian gene called CYP2E1 to a common houseplant, pothos ivy (Epipremnum aureum), would boost the plant's detoxifying potential. This gene encodes cytochrome P450 2E1, an enzyme that breaks down a wide range of volatile organic compounds found in the home.

The team introduced rabbit CYP2E1 to the ivy's genome and injected benzene or chloroform gas into closed vials that contained growing plants. After 3 days, the concentrations of these compounds in the vials had dropped dramatically, and by 8 days, chloroform was barely detectable. In contrast, the compounds' concentrations in vials containing unmodified ivy or no plants did not change. The researchers estimate that a hypothetical biofilter made of the genetically modified plants would deliver clean air at rates comparable to commercial home particulate filters.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News-Medical.Net.
Post a new comment
Post
You might also like... ×
Lack of autism risk gene disrupts prefrontal cortex connectivity in mice