Specific cognitive deficits found in individuals with spinal cord injury

NewsGuard 100/100 Score

Similarities in cognitive findings between persons with spinal cord injury and older healthy individuals could indicate accelerated aging of the brain after spinal cord injury

A multidisciplinary team of researchers has identified specific cognitive deficits in individuals with spinal cord injury (SCI). Their findings support the theory of accelerated aging after SCI, and have important implications for further research.

The article, "Patterns of cognitive deficits in persons with spinal cord injury as compared with both age-matched and older individuals without spinal cord injury", (doi: 10.1080/10790268.2018.1543103) was epublished ahead of print on December 3, 2018 by the Journal of Spinal Cord Medicine. The authors are scientists with expertise in cognitive rehabilitation and SCI rehabilitation: Nancy D. Chiaravalloti, PhD, Erica Weber, PhD, Glenn Wylie, DPhil, and Trevor Dyson-Hudson, MD, from Kessler Foundation, and Jill M. Wecht, EdD, from the James J. Peters VA Medical Center.

Courtesy of the publisher, this article is Open Access through March 31. https://doi.org/10.1080/10790268.2018.1543103

Individuals with chronic SCI have an increased risk for cognitive impairment, which can adversely affect recovery and overall quality of life. Concomitant brain injury fails to account for the increased risk for cognitive deficits. Multiple factors contribute to the high incidence - up to 60 percent demonstrate some degree of cognitive impairment.

Developing effective interventions is dependent on precise knowledge of the types of deficits. To explore this question, the team administered a battery of neuropsychological tests to 3 groups: 60 individuals with spinal cord injury (32 paraplegia, 28 tetraplegia), 30 age-matched controls, and 20 older healthy controls. None of the tests required motor ability; these included the WAIS-III Digit Span and Letter-Number Sequencing; Symbol Digit Modalities Test (SDMT) - oral version; California Verbal Learning Test-II; Paced Auditory Serial Addition Test (PASAT); the Wechsler Abbreviated Scale of Intelligence (WASI); Delis-Kaplan Executive Function System; and the Verbal Fluency subtest.

Significant differences were found between the SCI group and the age-matched control group, according to Dr. Chiaravalloti, director of Traumatic Brain Injury (TBI) Research, and director of the Northern New Jersey TBI Model System. "The individuals with SCI had deficits in information processing speed, verbal fluency, and new learning and memory," noted Dr. Chiaravalloti, "while their attention and working memory were unaffected. As we had postulated, their neuropsychological profile more closely aligned with that of older healthy controls. This could be a sign of accelerated brain aging after SCI, a phenomenon that has been associated with other neurological conditions."

"People often focus on mobility impairments associated with SCI; however, addressing cognitive deficits in this population is also critically important," said co-author Dr. Dyson-Hudson, director of SCI Research, and director of the Northern New Jersey SCI Model System. "Future research needs to be based on broader measures of neuropsychological function. Identifying modifiable risk factors and developing targeted cognitive interventions will help restore maximal function, and support the efforts of individuals to participate in their communities and the workforce."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Machine learning reveals age-related decline in stemness across human tissues