Researchers discover promising approach to silence HIV infection

NewsGuard 100/100 Score

Researchers from The University of Texas Medical Branch at Galveston have discovered a new potential medication that works with an HIV-infected person's own body to further suppress the ever present but silent virus that available HIV treatments are unable to combat.

Although the potential new drug could complement the current HIV anti-retroviral therapy (ART) medications, it may also be possible that it could lead to HIV remission without a lifetime of taking ART medications. The findings are published in the Journal of Clinical Investigation.

The HIV virus gets integrated into the infected person's genetic coding and establishes a constant dormant infection, creating a big treatment challenge. Because of this, current ART medications fail to cure the virus and when someone stops the drug, the virus almost always begins to multiply and wreak havoc. Drug resistance is also a public health issue with the ART medications. Being able to induce a sustained HIV remission free of ART is an important goal for HIV treatment.

We are the first to show that human BRD4 protein and its associated machinery can be harnessed to suppress dormant HIV. Our findings are exciting because they not only improve our understanding of the biology of HIV epigenetic regulation, they also present a promising approach for the development of probes and/or therapeutic agents for HIV silencing, hopefully leading to cure of the virus eventually."

Senior author Haitao Hu, assistant professor, department of microbiology and immunology, UTMB

In the laboratory study, the researchers found that the protein BRD4 plays an important role in regulating the production of new copies of the HIV gene. The team successfully designed, synthesized and evaluated a series of small molecules to selectively program BRD4 to suppress HIV and identified a lead compound called ZL0580. They tested the lead molecule in HIV infection models and found that it significantly delayed dormant HIV reactivation after ART cessation in blood cells of ART-treated, HIV infected people.

"We will continue to optimize the chemical structure and effectiveness of this class of molecules and conduct safety testing in cellular and animal studies," said co-senior author Jia Zhou, UTMB professor in the department of pharmacology and toxicology. "We look forward to the time when we can begin clinical trials so that this approach can begin to help HIV-infected individuals."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Breakthrough study offers hope for an effective HIV cure