Unique photonic device could pave the way for a breakthrough in medical implants

NewsGuard 100/100 Score

Over the past few decades, medical technology seen various advances in terms of the scope and efficiency of implant devices. For example, developments in medical research have led to the emergence of electronic implants, such as pacemakers to regulate the heart rate and cerebral spinal shunts to control the flow of spinal fluid. Most of these medical devices, including the pacemaker, require a constant source of energy to operate. Naturally, this causes some limitations: batteries, which provide an energy source for the implants, have a finite lifespan. Once the battery power gets exhausted, there is no other option but to perform invasive surgery to replace the battery, which poses a risk of surgical complications, such as bruising, infections, and other adverse events.

In a new study published in PNAS, a research group from South Korea, led by Professor Jongho Lee at GIST, dug deeper to find a solution: they attempted to develop a strategy to recharge the internal battery of devices without invasive surgery or risky penetrative procedures. Prof Lee explains, "One of the greatest demands in biomedical electronic implants is to provide a sustainable electrical power for extended healthy life without battery replacement surgeries." Although this is a tricky concept, Prof Lee believes that the answer lies in the "translucency" of living tissue.

This can be explained through an interesting phenomenon. When you hold your hand up to a powerful light, you can see that the edges of your hand glow as the light passes through your skin. Taking inspiration from this, Prof Lee and his team developed an "active photonic power transfer" method, which can generate electrical power in the body. This novel system consisted of two parts: a skin-attachable micro-LED source patch--which can generate photons that would penetrate through the tissues--and a photovoltaic device integrated into a medical implant--which can capture the photons and generate electrical energy. This system provides a sustainable way of supplying the medical implant device with enough power to avoid any high-risk replacement methods.

Currently, a lack of a reliable source of power limits the functionality and performance of implant devices. If we can secure enough electrical power in our body, new types of medical implants with diverse functions and high performance can be developed."

Professor Jongho Lee at GIST

When the scientists tested this power system in mice, they found that this wireless power transfer system is easy to use, regardless of weather, clothes, indoor or outdoor conditions, etc. The light photons emitted from the source patch successfully penetrated live tissues in mice and recharged the device in a wireless and convenient manner. "These results enable the long-term use of currently available implants, in addition to accelerating emerging types of electrical implants that require higher power to provide diverse, convenient diagnostic and therapeutic functions in human bodies," says Prof Lee, pleased with the efforts of his team and already looking forward to furthering their experiments. He concludes, "Our device would probably not work for 'Iron Man,' but it can provide enough power for medical implants."

Source:
Journal reference:

Kim, J., et al. (2020) Active photonic wireless power transfer into live tissues. PNAS. doi.org/10.1073/pnas.2002201117.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Integrating social determinants of health to enhance heart failure risk prediction