Researchers develop protein-based biosensor for multiplex imaging of neurotransmitter

NewsGuard 100/100 Score

In 2018, Lin Tian and her team at UC Davis Health developed dLight1, a single fluorescent protein-based biosensor. This family of highly specific sensors detects dopamine, a hormone released by neurons to send signals to other nerve cells.

When combined with advanced microscopy, dLight1 provides high resolution, real-time imaging of the spatial and temporal release of dopamine in live animals.

Recently, Tian and her team succeeded in expanding the color spectrum of the dLight1 sensor. In an article published Sept. 7 in Nature Methods, they introduced two new spectral variants of dLight1: the yellow YdLight1 and the red RdLight1.

The new sensors will help researchers to detect and monitor different information processing activities in the brain. With the different colors, we will be able to see multiple neurochemical release and neural activities at the same time."

Lin Tian, Study Lead Author and Associate Professor, Department of Biochemistry and Molecular Medicine,

The RdLight1 permits the simultaneous assessment of dopamine, pre- or post-synaptic neuronal activity and the glutamate release in specific types of cells and neuronal projections in animals. Its increased light penetration and imaging depth provide enhanced dopamine signal quality. This allows researchers to optically dissect dopamine's release and model its effects on neural circuits.

As a neurotransmitter, dopamine plays an important role in movement, attention, learning and the brain's pleasure and reward system.

"These exciting new tools opened a new door to developing color-shifted neurochemical indicators. Together with other tools, they have great potential to unlock the mysteries of brain chemistry in health and disease," Tian said.

"The knowledge we gain from these sensors will facilitate the development of safer next-generation therapies to neuropsychiatric disorders such as depression, anxiety, schizophrenia and addiction."

Source:
Journal reference:

Patriarchi, T., et al. (2020) An expanded palette of dopamine sensors for multiplex imaging in vivo. Nature Methods. doi.org/10.1038/s41592-020-0936-3.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study finds dysfunction of key brain systems in people with psychosis