MTT procedure improves gastrointestinal, behavioral symptoms in ASD children

NewsGuard 100/100 Score

According to the Centers for Disease Research, 1 in 54 children is diagnosed with autism spectrum disorder (ASD) each year, and the number has been rising.

The disease causes perplexing, lifelong developmental disabilities, which usually arise during early childhood and affect social skills, communication, personal relationships, and self-control.

In new research appearing in the journal mSphere, Rosa Krajmalnik-Brown, James Adams and their colleagues highlight the crucial importance of bacterial microbes in the human gut for the diagnosis and treatment of ASD.

Autism is considered a "spectrum disorder," characterized by a range of stereotypic behaviors that can affect people to varying degrees.

While genetic correlates have been implicated, the full panoply of underlying causes of ASD remain murky. Despite the prevalence of the disease and its profound societal impact, no effective FDA-approved treatment for the disorder currently exists.

In earlier studies, the researchers observed the effects on ASD symptoms following the use of a revolutionary approach, known as microbial transfer therapy (MTT).

The procedure, in which gut microbiota from healthy donors are transplanted into ASD patients over a period of 7-8 weeks, produced marked alterations in the ASD gut, improving both gastrointestinal and behavioral symptoms of the disease. Remarkably, symptom improvement continued for two years after completion of the study.

The new research takes a closer look at plasma and fecal metabolites altered through MTT. According to Krajmalnik Brown, Professor at ASU's School of Sustainable Engineering and the Built Environment, researcher in the Biodesign Swette Center for Environmental Biotechnology and Director of the newly formed Biodesign Center for Health Through Microbiomes, "looking at metabolites is important because it can help us understand how microorganisms affect gastrointestinal symptoms and behavior. They can also be used as biomarkers."

Indeed, analysis of 619 plasma metabolites in the new study showed a distinctive metabolic profile in ASD children prior to the MTT procedure.

Careful investigation of metabolites in blood and feces, as opposed to simply tabulating microbial species in the gut, is crucial when trying to tease out the complex bacterial interactions, which can form both collaborative and competing networks, depending on the particulars of their environment.

Following the procedure, levels of key metabolites in plasma became more similar to levels in typically-developing children, suggesting that this was a result of adjusting the constellation of bacteria to more closely resemble conditions in the normal healthy gut, including a marked increase in microbial diversity.

The new research highlights significant metabolic changes in plasma samples and more modest alterations in fecal samples.

It was exciting to identify many differences in metabolite levels between children with autism and typically developing children, and to observe that many of the metabolite levels improved after microbiome transplant."

James Adams, Professor, School for Engineering of Matter, Transport and Energy, and Director of Autism/Asperger's Research Program, Arizona State University

Further research will help advance the understanding of the complex and vital interactions between the gut microbiome and neurological features associated with ASD and help fine-tune MTT therapy or other microbial based therapies, for greater effectiveness in mitigating symptoms of ASD.

Source:
Journal reference:

King, D-W., et al. (2020) Distinct Fecal and Plasma Metabolites in Children with Autism Spectrum Disorders and Their Modulation after Microbiota Transfer Therapy. mBio. doi.org/10.1128/mSphere.00314-20.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study reveals key gut microbiome differences in prediabetic patients