What are the dynamics of SARS-CoV-2 transmission inside an aircraft cabin?

NewsGuard 100/100 Score

A team of US scientists has recently evaluated the risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among passengers present inside an aircraft cabin. The findings suggest that the risk of airborne viral transmission is minimal during long-duration flights. The study is currently available on the medRxiv* preprint server.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Background

Since its emergence in December 2019, SARS-CoV-2, the causative pathogen of the coronavirus disease 2019 (COVID-19), has already infected more than 92.68 million people and claimed more than 1.98 million lives worldwide. To contain the spread of SARS-CoV-2, several control measures, such as regional or national lockdowns, movement or travel restrictions, and physical distancing, etc., have been implemented to some degree by government bodies of most countries. As a consequence, many countries have faced serious socioeconomic crises. During the later phases of the pandemic, relaxations on control measures have been made to support the economy and overcome the crisis.

After lifts in travel restrictions, airline services have been resumed between in many countries, which raises a question about the risk of viral transmission during travel. Because an airborne transmission of SARS-CoV-2 is possible, the risk of acquiring infection is expected to be higher in enclosed or poorly ventilated places. Thus, it is believed that passengers or airline staff present inside an aircraft cabin for a prolonged period of time might be at higher risk of SARS-CoV-2 infection.

Current study design

In this study, the scientists have tried to quantify the risk of SARS-CoV-2 infection among passengers traveling via two large aircraft (Boeing 767 and 777 airframes). They have used fluorescent and DNA-tagged microspheres to analyze the dispersion and deposition of aerosol particles released from a simulated SARS-CoV-2-infected passenger. Specifically, they have measured the level of aerosols within the breathing zone of fellow passengers who are seating in same row with the simulated infected passenger or in rows ahead or behind the source. They performed these measurements at different locations inside the aircraft, as well as by placing the simulated infected passenger at multiple locations.

Important observations

Boeing 777

By measuring the percentage of particle penetration into the breathing zones, the scientists observed that the maximum exposure occurs in a seat next to the simulated infected passenger. The level of exposure has been found to be lower in seats that are placed in front of the source, whereas seats placed behind the source have a higher exposure level.

With further analysis, they have observed that mixing of contaminants within a row occurs rapidly and that the flow of contaminants is directed toward the aft of the aircraft where the outflow valve is located. In first-class sections where gaps between seats are wide, the level of exposure is found to be lower than the economy section.   

Boeing 767

According to the findings, the risk of exposure in Boeing 767 is lower than the Boeing 777. However, both aircraft share similar characteristics of risk exposure. The flow of contaminants toward the aircraft aft is less in Boeing 767. The flow of contaminants released from the aft seat is directed toward the aft, whereas a forward flow is observed for contaminants released from the front-mid seat.    

By conducting similar experiments using a simulated infection source with or without masks, about 15% reduction in the particle count has been observed in experiments conducted with a mask.

Study significance

The study findings suggest that there could be a limited risk of exposure to SARS-CoV-2-containing aerosols inside an aircraft due to rapid mixing, dilution, and removal. A lower level of aerosol is observed in the aft section of the aircraft, which indicates a lower risk of exposure. However, it is important to consider that the study findings are based on the simulation of a single source of infection, and thus, the transmission dynamics may vary in conditions with multiple infected passengers. Moreover, the study focuses on aerosols and small particulate matter of 1-3 µm. The transmission dynamics of large respiratory droplets have not been included in the study.

This news article was a review of a preliminary scientific report that had not undergone peer-review at the time of publication. Since its initial publication, the scientific report has now been peer reviewed and accepted for publication in a Scientific Journal. Links to the preliminary and peer-reviewed reports are available in the Sources section at the bottom of this article. View Sources

Journal references:

Article Revisions

  • Apr 3 2023 - The preprint preliminary research paper that this article was based upon was accepted for publication in a peer-reviewed Scientific Journal. This article was edited accordingly to include a link to the final peer-reviewed paper, now shown in the sources section.
Dr. Sanchari Sinha Dutta

Written by

Dr. Sanchari Sinha Dutta

Dr. Sanchari Sinha Dutta is a science communicator who believes in spreading the power of science in every corner of the world. She has a Bachelor of Science (B.Sc.) degree and a Master's of Science (M.Sc.) in biology and human physiology. Following her Master's degree, Sanchari went on to study a Ph.D. in human physiology. She has authored more than 10 original research articles, all of which have been published in world renowned international journals.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Dutta, Sanchari Sinha Dutta. (2023, April 03). What are the dynamics of SARS-CoV-2 transmission inside an aircraft cabin?. News-Medical. Retrieved on May 08, 2024 from https://www.news-medical.net/news/20210114/What-are-the-dynamics-of-SARS-CoV-2-transmission-inside-an-aircraft-cabin.aspx.

  • MLA

    Dutta, Sanchari Sinha Dutta. "What are the dynamics of SARS-CoV-2 transmission inside an aircraft cabin?". News-Medical. 08 May 2024. <https://www.news-medical.net/news/20210114/What-are-the-dynamics-of-SARS-CoV-2-transmission-inside-an-aircraft-cabin.aspx>.

  • Chicago

    Dutta, Sanchari Sinha Dutta. "What are the dynamics of SARS-CoV-2 transmission inside an aircraft cabin?". News-Medical. https://www.news-medical.net/news/20210114/What-are-the-dynamics-of-SARS-CoV-2-transmission-inside-an-aircraft-cabin.aspx. (accessed May 08, 2024).

  • Harvard

    Dutta, Sanchari Sinha Dutta. 2023. What are the dynamics of SARS-CoV-2 transmission inside an aircraft cabin?. News-Medical, viewed 08 May 2024, https://www.news-medical.net/news/20210114/What-are-the-dynamics-of-SARS-CoV-2-transmission-inside-an-aircraft-cabin.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Do SARS-CoV-2 infections cause long-term loss of smell and taste?