New sensory neuron model enables easy generation of cells to fast-track pain research

NewsGuard 100/100 Score

Scientists have for the first time established a sensory neuron model able to mass-reproduce two key sensory neuron types involved in pain sensation, enabling the easy generation of large numbers of the cells to fast-track chronic pain research.

In research applications usually sensory neurons need to be isolated from animals. They represent a wide variety of different cell types, making it difficult to collect and isolate large quantities of pain-sensing neurons.

Using a new technique, researchers at Flinders University have found a way to reproduce millions of the cells, providing ample resources for the simultaneous testing of thousands of samples or potential drug libraries.

Our model replicates sensory neurons found in bundles called dorsal root ganglia next to the spinal cord. These house the majority of the sensory fibers in the whole body that are capable of detecting heat, noxious chemicals and pressure, itch and cold"

Dr Dusan Matusica, Study Leader, Flinders University

Dr Matusica says these neurons are involved in collating and transmitting all the signals from the body to the spinal cord, and then the brain.

"Scientists have long known that a subgroup of these neurons is critical in transmitting signals that lead to feelings of pain, and that changes in their signaling leads to the development of chronic pain.

"But together with challenges in isolating sufficient quantities of the neural cells, we have the additional challenge of cells dying in the isolation process.

"Our model means that for the first time, we can easily generate pure populations of these two types of sensory cells in culture, providing the opportunity to get further insights into their function."

Dr Matusica says this new finding has significant implications for researchers around the world, with billions of the cells able to the cultured in as short a time as a week if needed, substantially reducing scientists' reliance on animals in the initial discovery phases of research projects.

The multidisciplinary research team has also genetically sequenced the two neural cells in their entirety, meaning researchers around the world can quickly and easily determine whether they are suitable for their studies.

Source:
Journal reference:

Dusan, M., et al. (2020) Differentiation of the 50B11 dorsal root ganglion cells into NGF and GDNF responsive nociceptor subtypes. Molecular Pain. doi.org/10.1177/1744806920970368.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research confirms no association between SARS-CoV-2 and childhood asthma diagnoses