CU researchers awarded NEI's 3D ROC prize to accelerate development of new therapies

NewsGuard 100/100 Score

Natalia Vergara, PhD, assistant professor of ophthalmology at the University of Colorado School of Medicine, has been awarded a 3D ROC prize by the National Eye Institute (NEI) for her research team's work to create better models to accelerate the development of new therapies for retinal diseases.

The prize competition was established by the NEI to promote research on creating improved three-dimensional retinas in vitro, known as retinal organoids, derived from human stem cells,that can help researchers across the country with their work. The full name of the 3D ROC competition is 3D Retina Organoid Challenge.

Vergara and her team were the awardees in Phase II of the NEI's 3D ROC competition, receiving $60,000 for their work developing an organoid model that mimics the composition of the human retina and can respond to light. A key innovation of the team's project was the use of engineered stem cells that allow different cell types in these retinas to fluoresce in different colors, and the combination of this system with a state-of-the-art technology that enables the quantification of those cells in real time. This breakthrough allows for the application of human retinal organoids to the screening and validation of drugs as potential treatments for blinding diseases.

Vergara conducts research on the Anschutz Medical Campus and she is a member of CellSight, a multidisciplinary research initiative that aims to develop stem cell-based therapeutics to save and restore sight in patients with blinding diseases.

In the past decade, the advent of human stem cell-derived retinal organoid models created new opportunities to improve the drug development pipeline by increasing efficiency and decreasing costs. These models make it possible to test drug candidates in three-dimensional human retinal tissues.

The challenge for researchers has been standardizing the process of developing the retinal organoids from induced pluripotent stem cells. Through its work, Vergara's team has been able to create a process for making light responsive retinal organoids that have consistent structure and cellular composition. The researchers' process also improved the yield of retinal organoids and allows researchers to track the cells over a period of time.

Vergara and her fellow CellSight researcher, Valeria Canto-Soler, PhD, describe the research in the video "Improved Fluorescent Reporter Quantification-Based 3D Retinal Organoid Paradigm for Drug Screening." The project is a collaboration with researchers at Miami University, and Nanoscope Technologies.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers aim to use AI for early screening and prognosis of Dry Eye Disease