Study shows that telomeres shorten most rapidly during early childhood

NewsGuard 100/100 Score

Telomeres are protective caps on DNA that shorten as we grow older. Now, one of the first studies to examine telomere length (TL) in childhood finds that the initial setting of TL during prenatal development and in the first years of life may determine one's TL throughout childhood and potentially even into adulthood or older age.

The study also finds that TL decreases most rapidly from birth to age 3, followed by a period of maintenance into the pre-puberty period, although it was sometimes seen to lengthen.

The study, which followed children from birth to age 9, was led by researchers at the Columbia Center for Children's Environmental Health at Columbia University Mailman School of Public Health. Results appear in the journal Psychoneuroendocrinology.

The researchers discovered that a mother's TL is predictive of newborn TL and tracks with her child's TL through pre-adolescence. While all telomeres are expected to shorten with age, the reasons why some children have telomeres that shorten faster are unknown, one explanation may be that telomeres are susceptible to environmental pollutants.

It is also unknown why some children had telomeres that lengthened across the study period though it is notable that this phenomenon has also been observed in other studies.

Given the importance of telomere length in cellular health and aging, it is critical to understand the dynamics of telomeres in childhood. The rapid rate of telomere attrition between birth and age 3 years may render telomeres particularly susceptible to environmental influences during this developmental window, potentially influencing life-long health and longevity."

Julie Herbstman, PhD, Study Senior Author and Director, CCCEH

Herbstman is also the associate professor of environmental health science at Columbia Mailman School.

In the new study, researchers used polymerase chain reaction to measure TL in white blood cells isolated from cord blood and blood collected at ages 3, 5, 7, and 9, from 224 children. They also measured maternal TL at delivery in a subset of mothers.

The researchers say more research is needed to understand the biological mechanisms driving variability in the rate of TL change during the first years of life, as well as modifiable environmental factors that contribute to shifts in the rate of attrition.

Source:
Journal reference:

Cowell, W., et al. (2021) Telomere dynamics across the early life course: Findings from a longitudinal study in children. Psychoneuroendocrinology. doi.org/10.1016/j.psyneuen.2021.105270.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Reversing biological age could increase longevity and lower dementia and stroke risk