Optical coherence tomography combined with machine learning to develop colorectal cancer imaging tool

NewsGuard 100/100 Score

A research team from the lab of Quing Zhu, the Edwin H. Murty Professor of Engineering in the Department of Biomedical Engineering at the McKelvey School of Engineering at Washington University in St. Louis, has combined optical coherence tomography (OCT) and machine learning to develop a colorectal cancer imaging tool that may one day improve the traditional endoscopy currently used by doctors.

The results were published in the June issue of the Journal of Biophotonics, with an image featured on the inside cover.

Screening for colon cancer now relies on human visual inspection of tissue during a colonoscopy procedure. This technique, however, does not detect and diagnose subsurface lesions.

An endoscopy OCT essentially shines a light in the colon to help a clinician see deeper to visualize and diagnose abnormalities. By collaborating with physicians at Washington University School of Medicine and with Chao Zhou, associate professor of biomedical engineering, the team developed a small OCT catheter, which uses a longer wavelength of light, to penetrate 1-2 mm into the tissue samples.

Hongbo Luo, a PhD student in Zhu's lab, led the work.

The technique provided more information about an abnormality than surface-level, white-light images currently used by physicians. Shuying Li, a biomedical engineering PhD student, used the imaging data to train a machine learning algorithm to differentiate between "normal" and "cancerous" tissue. The combined system allowed them to detect and classify cancerous tissue samples with a 93% diagnostic accuracy.

Zhu also is a professor of radiology at the School of Medicine. Her team worked with Vladimir Kushnir and Vladimir Lamm at the School of Medicine, Zhu's team of PhD students, including Tiger Nie, started a trial in patients in July 2022.

Source:
Journal reference:

Luo, H., et al. (2022) Human colorectal cancer tissue assessment using optical coherence tomography catheter and deep learning. Journal of Biophotonics. doi.org/10.1002/jbio.202100349.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New trials show promise for immune checkpoint blockers in early-stage lung cancer