Study identifies novel inhibitors against SARS-CoV-2 main protease

NewsGuard 100/100 Score

In a recent study posted to the bioRxiv* server, researchers at the University of Arizona screened ~11 million severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (MPro)-inhibiting small compounds in the ZINC15 database using a structure-based in-silico screening method.

Study: Novel inhibitors against COVID-19 main protease suppressed viral infection. Image Credit: NIAIDStudy: Novel inhibitors against COVID-19 main protease suppressed viral infection. Image Credit: NIAID

*Important notice: bioRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

Background

More antiviral compounds that limit SARS-CoV-2 replication and reduce coronavirus disease 2019 (COVID-19) severity are still urgently needed amid the continual emergence of its new variants of concern (VOC), such as Omicron, which is highly contagious and escape vaccine-derived immune surveillance. Also, significant infection risk remains high among unvaccinated, immunocompromised, and otherwise vulnerable individuals.

Of all non-structural proteins (NSPs), SARS-CoV-2 MPro is crucial for processing polypeptides pp1a and pp1ab encoded by the open reading frame 1 (ORF1) and ORF1b into functional proteins, including the RNA dependent-RNA polymerase (RdRP). Without prior proteolytic cleavage by MPro, RdRp activity, crucial for SARS-CoV-2 replication, is severely impaired.

Studies have implicated Mpro with the induction of cellular type I and type III interferon (IFN) and proinflammatory cytokine responses, either directly or indirectly. Thus, pharmacological inhibition of MPro might limit viral replication by inducing a type I and type III IFN-dependent antiviral state in the host cells. Furthermore, its structural conservation across all human SARS coronaviruses, with only three mutations outside its known binding pocket, makes MPro an attractive target for antiviral inhibition by drugs. Paxlovid, a derivative of the MPro inhibitor GC376, is an approved COVID-19 drug.

About the study

In the present study, researchers identified nine lead compounds from the ZINC15 database, which they prioritized for validation using SARS-CoV-2 replication assays. They performed these assays in rhesus monkey kidney-derived Vero cells and human lung-derived Calu-3 cells. The team obtained the X-ray crystal structure of MPro from the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB). They defined the binding pockets of MPro based on the reported inhibitor X77. Virtual screening with Schrödinger yielded top-500 lead compounds, which, in turn, fetched nine lead compounds for in vitro testing.

The researchers infected Vero cells with SARS-CoV-2 immediately after the addition of increasing concentrations of the lead compounds. After four days, they measured the number of infected cells by viral reduction plaque assay. Cells infected in the absence of the lead compounds served as a positive control, whereas uninfected cells cultured in the presence of increasing concentrations of the lead compounds served as a control for cytotoxicity.

In this way, the team measured the cytopathic effect (CPE) on Vero cells four days after SARS-CoV-2 infection inoculated with increasing concentrations of 0.001 to 100 µM of the three compounds gradually. Simultaneously, they determined the cytotoxicity of these compounds across all doses.

Study findings and conclusion

The researchers identified nine lead compounds that showed hydrogen bonding interactions and other potential hydrophobic or hydrophilic interactions with SARS-CoV-2 MPro and bound to the same binding site. Of these, three compounds, i.e., PATH-6, PATH-7, and PATH-8, could significantly suppress the replication of SARS-CoV-2 by interfering with MPro activity. In addition, they showed a significant decrease in the number of infected cells compared to the positive control. PATH-6, PATH-7, and PATH-8 inhibited virus-induced CPE with a half maximal effective concentration (EC50) between 1.57 – 9.3 µM. PATH-6 showed no sign of cytotoxicity, and PATH-7 showed no sign of cytotoxicity within 10 µM.

The hydrogen bond, van der Waals, hydrophobic and Pi-Pi interactions between these three validated compounds and SARS-CoV-2 MPro mainly occurred at the catalytic pocket with strong bonding to histidine (His)41 and cysteine (Cys)145, indicating these residues may be particularly involved in inhibiting SARS-CoV-2 MPro. Overall, these experiments confirmed that three out of the total nine lead compounds significantly suppressed SARS-CoV-2 infection in vitro, and especially PATH-6 is a promising compound for further optimization and could be added to the existing reservoir of the COVID-19 MPro inhibitors for future drug development against SARS-CoV-2 and related coronaviruses.

Further, the study analyses showed that leucine (Leu)141, asparagine (Asn)142, glycine (Gly)143, glutamic acid (Glu)166, and glutamine(Gln)189 amino acid residues stabilized the MPro‐ligand complex. The team built three MPro structures with K90R mutation and validated all these compounds by docking them to these three MPro mutants. Similar binding affinities of these lead compounds to the mutant structures compared to wild-type MPro, suggested that they robustly inhibited all currently known SARS-CoV-2 VOCs.

*Important notice: bioRxiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as conclusive, guide clinical practice/health-related behavior, or treated as established information.

Journal reference:
Neha Mathur

Written by

Neha Mathur

Neha is a digital marketing professional based in Gurugram, India. She has a Master’s degree from the University of Rajasthan with a specialization in Biotechnology in 2008. She has experience in pre-clinical research as part of her research project in The Department of Toxicology at the prestigious Central Drug Research Institute (CDRI), Lucknow, India. She also holds a certification in C++ programming.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Mathur, Neha. (2022, November 08). Study identifies novel inhibitors against SARS-CoV-2 main protease. News-Medical. Retrieved on April 26, 2024 from https://www.news-medical.net/news/20221108/Study-identifies-novel-inhibitors-against-SARS-CoV-2-main-protease.aspx.

  • MLA

    Mathur, Neha. "Study identifies novel inhibitors against SARS-CoV-2 main protease". News-Medical. 26 April 2024. <https://www.news-medical.net/news/20221108/Study-identifies-novel-inhibitors-against-SARS-CoV-2-main-protease.aspx>.

  • Chicago

    Mathur, Neha. "Study identifies novel inhibitors against SARS-CoV-2 main protease". News-Medical. https://www.news-medical.net/news/20221108/Study-identifies-novel-inhibitors-against-SARS-CoV-2-main-protease.aspx. (accessed April 26, 2024).

  • Harvard

    Mathur, Neha. 2022. Study identifies novel inhibitors against SARS-CoV-2 main protease. News-Medical, viewed 26 April 2024, https://www.news-medical.net/news/20221108/Study-identifies-novel-inhibitors-against-SARS-CoV-2-main-protease.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
COVID-19's lasting mark: Long-term smell and taste loss