AI outperforms the leading tools in predicting enzyme function

NewsGuard 100/100 Score

A new artificial intelligence tool can predict the functions of enzymes based on their amino acid sequences, even when the enzymes are unstudied or poorly understood. The researchers said the AI tool, dubbed CLEAN, outperforms the leading state-of-the-art tools in accuracy, reliability and sensitivity. Better understanding of enzymes and their functions would be a boon for research in genomics, chemistry, industrial materials, medicine, pharmaceuticals and more.

"Just like ChatGPT uses data from written language to create predictive text, we are leveraging the language of proteins to predict their activity," said study leader Huimin Zhao, a University of Illinois Urbana-Champaign professor of chemical and biomolecular engineering. "Almost every researcher, when working with a new protein sequence, wants to know right away what the protein does. In addition, when making chemicals for any application – biology, medicine, industry – this tool will help researchers quickly identify the proper enzymes needed for the synthesis of chemicals and materials."

The researchers will publish their findings in the journal Science and make CLEAN accessible online March 31.

With advances in genomics, many enzymes have been identified and sequenced, but scientists have little or no information about what those enzymes do, said Zhao, a member of the Carl R. Woese Institute for Genomic Biology at Illinois.

Other computational tools try to predict enzyme functions. Typically, they attempt to assign an enzyme commission number – an ID code that indicates what kind of reaction an enzyme catalyzes – by comparing a queried sequence with a catalog of known enzymes and finding similar sequences. However, these tools don't work as well with less-studied or uncharacterized enzymes, or with enzymes that perform multiple jobs, Zhao said.

We are not the first one to use AI tools to predict enzyme commission numbers, but we are the first one to use this new deep-learning algorithm called contrastive learning to predict enzyme function. We find that this algorithm works much better than the AI tools that are used by others. We cannot guarantee everyone's product will be correctly predicted, but we can get higher accuracy than the other two or other three methods."

Huimin Zhao, professor of chemical and biomolecular engineering, University of Illinois Urbana-Champaign

The researchers verified their tool experimentally with both computational and in vitro experiments. They found that not only could the tool predict the function of previously uncharacterized enzymes, it also corrected enzymes mislabeled by the leading software and correctly identified enzymes with two or more functions.

Zhao's group is making CLEAN accessible online for other researchers seeking to characterize an enzyme or determine whether an enzyme could catalyze a desired reaction.

"We hope that this tool will be used widely by the broad research community," Zhao said. "With the web interface, researchers can just enter the sequence in a search box, like a search engine, and see the results."

Zhao said the group plans to expand the AI behind CLEAN to characterize other proteins, such as binding proteins. The team also hopes to further develop the machine-learning algorithms so that a user could search for a desired reaction and the AI would point to a proper enzyme for the job.

"There are a lot of uncharacterized binding proteins, such as receptors and transcription factors. We also want to predict their functions as well," Zhao said. "We want to predict the functions of all proteins so that we can know all the proteins a cell has and better study or engineer the whole cell for biotechnology or biomedical applications."

The National Science Foundation supported this work through the Molecule Maker Lab Institute, an AI Research Institute Zhao leads.

Source:
Journal reference:

Yu, T., et al. (2023) Low-temperature and circadian signals are integrated by the sigma factor SIG5. Science. doi.org/10.1126/science.adf2465.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Gut microbiota and obesity: New study shows promising results with probiotic and prebiotic intervention