Young human serum requires bone marrow for skin rejuvenation effects

A new research paper featured on the cover of Volume 17, Issue 7 of Aging (Aging-US) was published on July 25, 2025, titled "Systemic factors in young human serum influence in vitro responses of human skin and bone marrow-derived blood cells in a microphysiological co-culture system."

The study, led by first author Johanna Ritter and corresponding author Elke Grönniger from Beiersdorf AG, Research and Development Hamburg, shows that components in young human blood serum can help restore youthful properties to skin, but only when bone marrow cells are also present. This discovery highlights the role of bone marrow in supporting skin health and may allow for novel approaches aimed at slowing or reversing visible signs of aging.

The research explored how factors present in blood serum, already known to influence aging in animal studies, act on human cells. Using an advanced system that mimics human circulation, the researchers connected a 3D skin model with a 3D bone marrow model. They found that young human serum alone was not enough to rejuvenate skin. However, when bone marrow cells were present, these serum factors changed the activity of those cells, which then secreted proteins that rejuvenated skin tissue.

"Interestingly, we detected a significant increase in Ki67 positive cells in the dynamic skin model co-cultured with BM model and young serum compared to the model co-cultured with BM and old serum, indicating an improved regenerative capacity of the tissue."

Detailed analysis indicated that young serum stimulated the bone marrow to produce a group of 55 proteins, with 7 of them demonstrating the ability to boost cell renewal, collagen production, and other features associated with youthful skin. These proteins included factors that improved energy production in cells and reduced signs of cellular aging. Without the interaction between skin and bone marrow cells, these rejuvenating effects did not occur.

This finding explains why earlier experiments in mice, where young and old animals shared a blood supply, showed rejuvenation across organs. It suggests that bone marrow-derived cells are critical messengers that transform signals from blood into effects on other tissues, including the skin.

While these results are preclinical and not from human trials, they offer a starting point for new strategies in regenerative medicine and skin care. By identifying specific proteins that may carry rejuvenating signals, the study points to a new way to address age-related changes. Researchers emphasize that further studies will be needed to confirm these effects in humans and to test how these proteins can be safely and effectively applied in future therapies.

Overall, this research is an important step in understanding how young blood serum factors influence human tissue and could guide the development of novel methods to maintain healthier skin as people age.

Source:
Journal reference:

Ritter, J., et al. (2025). Systemic factors in young human serum influence. Aging. doi.org/10.18632/aging.206288.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Single-cell sequencing maps immune changes in chronic myeloid leukemia