Unique technology identifies drug candidates, speeds up drug development

The search for new therapeutic agents is time-consuming and expensive. Pharmaceutical companies may have to screen thousands of compounds for the ability to bind a target molecule before they hit upon a promising drug candidate.

A group of Biophysicists at LMU Munich led by Professor Dieter Braun, a member of the Cluster of Excellence "Nanosystems Initiative Munich" (NIM), and a partner in NanoTemper (an LMU spin-off), have now developed a unique technology called "microscale thermophoresis" that allows to measure intereactions under close-to-native conditions, thus improving the decision making process in drug development.

The technique takes advantage of the Soret effect - the tendency of molecules to drift along temperature gradients, usually from warm to cold. If a compound encounters and binds to another molecule, its thermophoretic parameters change, and its trajectory may even be reversed. This phenomenon can be exploited to determine whether a molecule that is known to play a causative role in a given disease binds to a test substance. In the test, which can be carried out directly on blood samples, the thermodiffusion of a labelled biomolecule of interest is measured in the presence and absence of a candidate binding agent. If the two bind together to form a complex, the resulting change in their thermophoretic behaviour can be detected. "Detection of binding activity is the first step on the road to a new drug", says Braun. "The new method also has potential applications in medical diagnostics, and in food and environmental monitoring."

The procedures conventionally used to identify candidate drugs are normally carried out in artificial buffer solutions, and the results often have little relationship to a compound's binding affinity for its target in the blood. The new thermophoretic technique, on the other hand, allows one to perform the binding test directly in a blood sample and therefore gives more reliable results. The substance to be tested is mixed with a blood sample containing a target that is known to be associated with a disease state and has been labelled with a fluorescent tag. A tiny drop of the mixture is taken up into a thin glass capillary tube, and a focused beam of IR-laser light is used to heat a small volume of the solution in the middle of the tube. This gives rise to a temperature gradient that falls off towards the outside. The response of the labelled molecule to the variation in temperature can then be followed using fluorescence methods.

Upon heating of the sample, it immediately becomes apparent whether or not the fluorescent target-molecules in the sample behave differently in the presence of the drug test compound than they do in its absence. Any difference in thermophoresis between the two samples indicates that the test substance binds to the labelled target, and provides the first hint that it may have therapeutic potential. "Our method will not only be a boon to drug discovery", says Braun. "It can also be used in medical diagnostics, food testing and environmental monitoring. One could, for instance, employ it to diagnose autoimmune diseases and infections, or as the basis for a rapid test for the presence of antibiotics in milk or toxic substances in water." (NIM/suwe)

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    NanoTemper Technologies. (2019, June 20). Unique technology identifies drug candidates, speeds up drug development. News-Medical. Retrieved on October 05, 2024 from https://www.news-medical.net/news/20100224/Unique-technology-identifies-drug-candidates-speeds-up-drug-development.aspx.

  • MLA

    NanoTemper Technologies. "Unique technology identifies drug candidates, speeds up drug development". News-Medical. 05 October 2024. <https://www.news-medical.net/news/20100224/Unique-technology-identifies-drug-candidates-speeds-up-drug-development.aspx>.

  • Chicago

    NanoTemper Technologies. "Unique technology identifies drug candidates, speeds up drug development". News-Medical. https://www.news-medical.net/news/20100224/Unique-technology-identifies-drug-candidates-speeds-up-drug-development.aspx. (accessed October 05, 2024).

  • Harvard

    NanoTemper Technologies. 2019. Unique technology identifies drug candidates, speeds up drug development. News-Medical, viewed 05 October 2024, https://www.news-medical.net/news/20100224/Unique-technology-identifies-drug-candidates-speeds-up-drug-development.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
NanoTemper Technologies to highlight applications of MST, nanoDSF in drug discovery at Biopharma Workshop 2016