New research could extend the life of donated organs

NewsGuard 100/100 Score

Rutgers-Camden researchers investigate cellular adaptations

When kitchens become infiltrated with fruit flies, especially during the dog days of summer, homeowners might wish that the flying pests would just turn to ice.

The fruit fly Drosophila melanogaster does boast a powerful genetic system making it an ideal organism to test a cool new discovery: how an enzyme regulates body energy levels. Shutting off this molecular thermostat could result in a newfound cold tolerance that has multiple applications, including extending the 24-hour window donated organs now have for optimum use.

Thanks to a $385,419 grant from the National Institute of Health, a team of Rutgers-Camden biologists is working to engineer cold tolerant fruit flies and ultimately human cells within the next three years.

This research breakthrough can be credited to Daniel Shain, a professor of biology at Rutgers-Camden, who has traveled the globe seeking knowledge on how ice worms don't just survive in glaciers, but thrive. When Shain identified a key enzyme that helps ice worms do this - AMP phosphatase - he tapped Nir Yakoby, an expert Drosophila geneticist and assistant professor of biology at Rutgers-Camden, to create this cold-tolerant fruit fly.

"The goal is to make human cells survive on ice. Twenty-four hours on ice is pushing it and many people die waiting," says Shain, who is scheduled to travel to Tibet next year to observe ice worms in the vicinity. "We're lucky to have an expert Drosophila geneticist on campus to test this genetic switch."

Not just the ice worm lives on ice; the Rutgers-Camden research team, which includes undergraduate and graduate students, observed how other organisms, like bacteria, fungi, and algae, also are breaking through their internal thermostats.

"Shain accomplished this switch in mono-cell organisms and now we are going further up into the evolutionary tree to a more complex species," offers Yakoby, who joined the Rutgers--Camden faculty last year after conducting postdoctoral research at Princeton University's Lewis Sigler Institute for Integrative Genomics. "If we can get these human cells to survive on ice, we should expect organs to do the same. Organs are just a collection of cells."

Source: Rutgers University

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research from NY highlights pollution as a key factor in rising cancer rates among youth