Study shows degeneration of corpus callosum in stroke patients with impaired hand movement

NewsGuard 100/100 Score

Recovery depends on the exchange of information between the 2 halves of the brain

The structure of the corpus callosum, a thick band of nerve fibres that connects the two halves of the brain with each other and in this way enables the rapid exchange of information between the left and right hemispheres, plays an important role in the regaining of motor skills following a stroke. A study currently published in the journal Human Brain Mapping has shown that in stroke patients with particularly severely impaired hand movement, this communication channel between the two brain hemispheres in particular was badly damaged.

In order to relate brain function and anatomical structure with each other, in this study the scientists from the Max Planck Institute for Neurological Research and the Department of Neurology at the University Hospital of Cologne combined two imaging methods. They asked stroke patients to make a simple tapping movement using the hand affected by the stroke and recorded their brain activity using functional magnetic resonance imaging. The data obtained in this way were then compared with data from healthy subjects. As expected from previous test results, compared with the control group, the stroke patients recorded a lower tapping speed and increased brain activity on both sides of the brain. "The increased activity in the healthy brain hemisphere, in particular, points to the impaired processing of motor programs between the two brain hemispheres," explains Christian Grefkes, head of the research study.

In order to demonstrate the structural connection between brain areas, the Cologne researchers used diffusion-based magnetic resonance imaging (dMRI), which can be used to reconstruct longer stretches of nerve fibres. dMRI is based on the principle that cell elements, such as the membrane or extensions, inhibit the spread of water molecules thereby preventing them from diffusing randomly in all directions. Consequently, parallel nerve fibres can be clearly identified using dMRI. Compared to the healthy control group, the stroke patients had lower diffusion values in the corpus callosum region. This would indicate that this interhemispheric communications connection was damaged by the stroke. The most significant deviations from the values of the control group were observed in patients with more severe motor defects and increased activity in the healthy brain hemisphere.

Therefore, in addition to cell death in the actual stroke area, damage to a very distant connection structure plays a crucial role in the inability of stroke patients to fully regain their original motor capacities. "This is why, we are currently examining whether we can regenerate the communication between the brain hemispheres through early and regular stimulation treatment. Our long-term aim is to improve motor deficits in stroke patients," says Grefkes.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Small amounts of physical activity could help ward off stroke in the long term