Researchers define interaction between two essential proteins that control inflammation

NewsGuard 100/100 Score

Researchers at the IRCM, led by geneticist Dr. Jacques Drouin, recently defined the interaction between two essential proteins that control inflammation. This important breakthrough will be published in tomorrow's print edition of the scientific journal Molecular Cell.

IRCM scientists study glucocorticoids, a class of steroid hormones that suppress the immune system and reduce inflammation. They are used in medicine to treat diseases such as allergies, asthma, and autoimmune diseases.

"In molecular biology and genetics, proteins known as transcription factors bind to DNA in order to control the expression (or transcription) of genetic information," explains Dr. Drouin, Director of the Molecular Genetics research unit at the IRCM. "Our work defined the genome-wide interaction between two transcription factors: Stat3 and the glucocorticoid receptor (GR)."

While Stat3 acts on pro-inflammatory gene targets, glucocorticoids are widely used for their anti-inflammatory properties and their receptor, GR, interacts with Stat3 to control these actions. GR can be found in almost every cell in the body and regulates genes that control development, metabolism, and inflammatory and immune response.

Transcription factors can control the flow of information alone or along with other proteins, either by promoting (as an activator) or blocking (as a repressor) the recruitment of enzymes required for the expression of specific genes. Transcription factors can bind directly to DNA or attach themselves to another DNA-bound protein.

"In some cases, the proteins will behave differently depending on how they are connected to a DNA sequence," says David Langlais, former doctoral student in Dr. Drouin's laboratory and first author of the article. "We were interested in understanding why some transcription factors could act as activators when bound directly to DNA, but act as repressors if they are recruited by another protein. The molecular basis for this dual action remained unclear until now."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
US study links extended sitting and lack of coffee to higher death rates