Investigators discover biological explanation for why low levels of oxygen advance SMA symptoms

Investigators at Nationwide Children's Hospital may have discovered a biological explanation for why low levels of oxygen advance spinal muscular atrophy (SMA) symptoms and why breathing treatments help SMA patients live longer. The findings appear in Human Molecular Genetics.

SMA is a progressive neurodegenerative disease that causes muscle damage and weakness leading to death. Respiratory support is one of the most common treatment options for severe SMA patients since respiratory deficiencies increase as the disease progresses. Clinicians have found that successful oxygen support can allow patients with severe SMA to live longer. However, the biological relationship between SMA symptoms and low oxygen levels isn't clear.

To better understand this relationship, investigators at Nationwide Children's Hospital examined gene expression within a mouse model of severe SMA. "We questioned whether low levels of oxygen linked to biological stress is a component of SMA disease progression and whether these low oxygen levels could influence how the SMN2 gene is spliced," says Dawn Chandler, PhD, principal investigator in the Center for Childhood Cancer and Blood Diseases at The Research Institute at Nationwide Children's Hospital.

SMA is caused by mutation or deletion of the SMN1 gene that leads to reduced levels of the survival motor neuron protein. Although a duplicate SMN gene exists in humans, SMN2, it only produces low levels of functional protein. This is caused by a splicing error in SMN2 in which exon 7 is predominantly skipped, lowering the amount of template used for protein construction.

Mouse models of severe SMA have shown changes in how genes are differentially spliced and expressed as the disease progresses, especially near end-stages. "One gene that undergoes extreme alteration is Hif3alpha," says Dr. Chandler. "This is a stress gene that responds to changes in available oxygen in the cellular environment, specifically to decreases in oxygen. This gave us a clue that low levels of oxygen might influence how the SMN2 gene is spliced."

Upon examining mouse models of severe SMA exposed to low oxygen levels, Dr. Chandler's team found that SMN2 exon 7 skipping increased within skeletal muscles. When the mice were treated with higher oxygen levels, exon 7 was included more often and the mice showed signs of improved motor function.

"These data correspond with the improvements seen in SMA patients who undergo oxygen treatment," says Dr. Chandler. "Our findings suggest that respiratory assistance is beneficial in part because it helps prevent periods of low oxygenation that would otherwise increase SMN2 exon 7 skipping and reduce SMN levels."

Dr. Chandler says daytime indicators that reveal when an SMA patient is experiencing low oxygen levels during sleep may serve as a measure to include SMA patients in earlier respiratory support and therefore improve quality of life or survival.

Source: Nationwide Children's Hospital

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Could microalgae be the secret weapon to ending global hunger and saving the planet?