Research findings suggest possible novel strategies to prevent SUDEP

NewsGuard 100/100 Score

Patients with epilepsy and, in particular, those with severe syndromic forms of the disorder, harbor a risk of sudden unexplained death in epilepsy, or SUDEP. Cardiac arrhythmias are a proposed cause. In a test of this theory, researchers have demonstrated that mice harboring a human SCN1A gene mutation that results in Dravet Syndrome (DS), a severe and intractable genetic epilepsy, have electrical disturbances in the heart that culminate in ventricular fibrillation and sudden cardiac death. Their findings, reported today at the American Epilepsy Society (AES) 67th annual meeting, suggest there may be novel strategies aimed at preventing SUDEP (Platform C.02 / abstract 1751046 - Heart Rate Variability Analysis Reveals Altered Autonomic Tone in Mouse Model of Dravet Syndrome).

The investigators used a mouse model of SCN1A-linked DS to conduct their study. SCN1A encodes the sodium channel protein, Nav1.1, which is expressed in both brain and heart. Despite the mutation leading to a loss of function, electrophysiological recordings from juvenile DS mouse heart cells paradoxically showed increased sodium current and a high incidence of abnormal re-excitation. These two elements are known to serve as substrates for the initiation of lethal arrhythmias in the heart. Additionally, DS mice were implanted with radiotelemetry ECG devices for the continuous recording of heart activity throughout the study. The mice were allowed at least 2 weeks for recovery from the implant procedure in order to return to normal function. Analyses of ECG recordings from the mice were then conducted for a period of 2 weeks. In the analyses, recordings of beat-to-beat variability of the DS mouse heart rate were compared to similar recordings from control animals that do not have the syndrome.

Heart rate variability analysis revealed that DS mice do not exhibit basal differences in autonomic nervous system tone. However, data from the cohort of DS mice that died during the study suggest that autonomic disturbances precede SUDEP, and may therefore provide an acute biomarker and substrate for cardiac arrhythmias and SUDEP. "Our study highlights the multifaceted pathophysiology of Dravet Syndrome that includes brain, heart, and autonomic disturbances, and suggests novel therapeutic strategies for interventions to reduce SUDEP in this and perhaps other severe epilepsies," says David S. Auerbach, Ph.D., of the University of Michigan.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Research confirms no association between SARS-CoV-2 and childhood asthma diagnoses