Cancer cells that fuse with macrophages play key role in the spread of cancer

NewsGuard 100/100 Score

Cancer cells fused with macrophages exhibit enhanced adhesive strength, formed tumors more rapidly than unfused cancer cells and flourished under conditions that dramatically inhibited growth of unfused cancer cells

Cancer cells that spontaneously fuse with macrophages, the immune system's healthy scavenger cells, play a key role in the metastasis, or spread of the cancer to other areas of the body, according to research to be presented Sunday, Dec. 15, at the American Society for Cell Biology annual meeting in New Orleans.

The researchers, Alain Silk, Ph.D., Melissa Wong, Ph.D., and colleagues at Oregon Health & Science University (OHSU) in Portland followed the work of German pathologist Otto Aichel, who suggested in 1911 that a cancer cell under attack by a white blood cell might spontaneously fuse with that cell to produce a hybrid cell with chromosomal abnormalities that could lead to cancer.

Although Aichel's theory was dismissed by his contemporaries, recent discoveries about the broader role of cell fusion in tissue homeostasis and regeneration have revived scientific interest in his ideas. Today there is strong evidence of fusion between cancer and normal cells in human cancer, but it has not been apparent whether cell fusion could provide cancer cells with a selective advantage that enhances cancer progression.

The OSHU researchers began by confirming that cells from various types of cancer could readily and spontaneously fuse with macrophages. By intensively studying the fusion-derived cancer cells, the researchers determined that these cells exhibited enhanced adhesive strength, formed tumors more rapidly than unfused cancer cells and flourished under conditions that dramatically inhibited growth of unfused cells.

"Overall, our findings demonstrate that spontaneous fusion of cancer cells with macrophages can profoundly and significantly impact the phenotype of tumorigenic cells, with implications for our basic understanding of cancer cell biology and the process of tumor evolution," the researchers said.

As cancer progresses, tumor cells acquire new capabilities, or phenotypes. They must grow in an uncontrolled manner, leave their site of origin and become resistant to anti-cancer drugs. Previous studies on the biology of cancer have revealed that cancer progression are determined by changes to the cancer genome, epigenetics, influences from the microenvironment, exosomes and the interplay with the immune system. The OSHU research implicates the fusion of cancer cells with macrophages as a new potentiator of cancer progression.

SOURCE American Society for Cell Biology

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New Lancet Commission on Breast Cancer: Transforming breast cancer care globally