Common antibiotics can promote C. diff infections by killing off bile acid-altering microbes

NewsGuard 100/100 Score

New research from North Carolina State University and the University of Michigan finds that bile acids which are altered by bacteria normally living in the large intestine inhibit the growth of Clostridium difficile, or C. diff. C. diff is a harmful bacterium that can cause painful and sometimes fatal infections. The work sheds light on the ways in which some commonly used antibiotics can promote C. diff infections by killing off the bile acid-altering microbes.

C. diff exists in the environment as a dormant spore. To colonize the gut, C. diff. spores need to germinate and become growing bacteria that produce toxins and damage the large intestine. Researchers know that the use of certain antibiotics lead to a higher risk of C. diff infections, particularly among hospital patients. Casey Theriot, an assistant professor of infectious disease at NC State, wanted to know exactly how C. diff spores were interacting with the microbiota, or natural bacterial environment, within the gut.

"We know that within a healthy gut environment, the growth of C. diff is inhibited," Theriot says. "But we wanted to learn more about the mechanisms behind that inhibitory effect."

Bile acids are made from cholesterol and aid in the digestion and absorption of fats. They also control lipoprotein, glucose, drug and energy metabolism. Primary bile acids are made in the liver and travel through the intestinal tract. In the large intestine, bacteria convert these to secondary bile acids, of which Theriot found many have an inhibitory effect on C. diff growth.

Theriot started the project while a research investigator at the University of Michigan with infectious diseases physician Vincent Young and undergraduate researcher Alison Bowman. The researchers looked at the intestinal contents of mice before and after treatment with many different antibiotics. They identified 26 different primary and secondary bile acids and defined the concentrations of those acids before and after treatment. Then they added C. diff spores to the contents in order to find out how the bacterium may germinate and grow in an actual gut environment.

Interestingly, they found that the primary bile acids in the small intestine allowed spores to germinate, or begin to grow, regardless of the antibiotic treatment.

But when the spores reached the large intestine, where normal gut bacteria generate secondary bile acids, the researchers found that those secondary bile acids stopped the C. diff from growing. When those bacteria -- and the secondary bile acids -- were not present following antibiotic treatment, the C. diff was able to quickly grow.

"These findings are a first step in understanding how the gut microbiota regulates bile acids throughout the intestine," says Theriot. "Hopefully they will aid the development of future therapies for C. difficile infection and other metabolically relevant disorders such as obesity and diabetes."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New research pinpoints key pathways in prostate cancer's vulnerability to ferroptosis