Researchers describe antibiotic resistance as either selfish or co-operative

NewsGuard 100/100 Score

Trace concentrations of antibiotic, such as those found in sewage outfalls, are enough to enable bacteria to keep antibiotic resistance, new research from the University of York has found. The concentrations are much lower than previously anticipated, and help to explain why antibiotic resistance is so persistent in the environment.

Antibiotic resistance can work in different ways. The research described the different mechanisms of resistance as either selfish or co-operative. A selfish drug resistance only benefits the individual cell with the resistance while a co-operative antibiotic resistance benefits both the resistant cell and surrounding cells whether they are resistant or not.

The researchers analysed a plasmid called RK2 in Escherichia coli, a bacterium which can cause infectious diarrhoea. RK2 encodes both co-operative resistance to the antibiotic ampicillin and selfish resistance to another antibiotic, tetracycline. They found that selfish drug resistance is selected for at concentrations of antibiotic around 100-fold lower than would be expected - equivalent to the residues of antibiotics found in contaminated sewage outfalls.

The study, which is published in Antimicrobial Agents and Chemotherapy (AAC), involved Professor Michael Brockhurst, Dr Jamie Wood and PhD student Michael Bottery in the Departments of Biology and Mathematics at York. The work was supported by the European Research Council under the EU's Seventh Framework Programme and the Wellcome Trust.

Dr Wood said: "The most common way bacteria become resistant to antibiotics is through horizontal gene transfer. Small bits of DNA, called plasmids, contain the resistance and can hop from one bacteria to another. Worse still, plasmids often contain more than one resistance."

Michael Bottery added: "There is a reservoir of antibiotic resistance out there which bacteria can pick and choose from. What we have found is some of that resistance can exist at much lower concentrations of antibiotic than previously understood."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers uncover role of persister cells in antibiotic resistance