Artificial mimic of protein could lead to new ways of building light-sensitive artificial cells

NewsGuard 100/100 Score

An artificial mimic of a key light-sensitive molecule has been made by scientists at the University of Bristol. The work, published in Science, could lead to new ways of building light-sensitive artificial cells.

Professor Jonathan Clayden and colleagues in Bristol's School of Chemistry, along with collaborators at the Universities of Manchester and Hull, created an artificial mimic of rhodopsin, a protein that resides in cell membranes in the retina. The absorption of light by rhodopsin is the first step in the biochemistry of vision.

Using molecular design features taken from some antibiotic molecules that also bind to membranes, the researchers were able to design and build a molecule that finds its way into a membrane and switches between different shapes in response to light of specific wavelengths.

The work revealed that unlike many natural molecules, these artificial structures have similar properties in solution and in membranes, making the prediction of their behaviour much more reliable.

Professor Clayden said: "This is the first time an artificial mimic of rhodopsin has been created: a discovery that could lead to new ways of building light-sensitive artificial cells and could allow scientists to bypass the usual communication mechanisms used by cells."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New insights into gas vesicle clustering in bacteria open doors for biomedical applications