Lawson Health scientists capture prostate cancer images using unique molecule

NewsGuard 100/100 Score

Scientists at Lawson Health Research Institute are the first in Canada to capture prostate cancer images using a new molecule. Known as a Prostate Specific Membrane Antigen (PSMA) probe, the new molecule is used in Positron Emissions Tomography (PET) scans. The probe targets PSMA, a unique molecule on prostate cancer cells, to provide highly specific images for better diagnosis and management of patient disease.

PET probes are used in imaging to correctly diagnose cancer. The probes are injected into a patient where they spread to identify sites of disease. PET scans are commonly acquired as combined or "hybrid" images with Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). The CT or MRI component helps more accurately determine where the PET probe is being concentrated.

The most common PET probes are suitable for many types of cancer, but are not as sensitive in identifying prostate cancer. PSMA probes provide higher accuracy by targeting PSMA molecules, which are highly over-expressed on prostate cancer cells.

PSMA probes are gaining popularity across the globe. This specific probe is a molecule called18F-DCFPyL and was developed by Dr. Martin Pomper at the John Hopkins Hospital in Baltimore. Dr. Pomper, also a Scientific Advisor to Lawson's prostate imaging team, worked in collaboration with Canada's Centre for Probe Development and Commercialization (CPDC) to bring the probe to our nation.

Lawson's Canadian Institutes of Health Research (CIHR) Team in Image Guidance for Prostate Cancer gained early access to the PSMA probe due to a history of close collaboration with Dr. Pomper and the CPDC. Marking the first time a PSMA probe has been used in Canada, the team captured PET/MRI and PET/CT images from a 64-year-old prostate cancer patient on March 18, 2016 at St. Joseph's Hospital.

"This is a tremendous step forward in the management of prostate cancer," said Dr. Glenn Bauman, a Lawson scientist and Radiation Oncologist at London Health Sciences Centre. "PSMA probes have the potential to provide increased accuracy and detection which leads to better treatment for individual patients."

The most common PSMA probe in other countries is 68Gallium. Early studies suggest the 18F-DFCPyL molecule has advantages over 68Gallium. For example, 18F-DFCPyL can be made efficiently in cyclotrons such as the one available at Lawson Health Research Institute, and appears to perform better in the identification of disease.

Lawson plans to study the probe with an additional 20 men over the next two years as part of an ongoing clinical trial funded by the Ontario Institute for Cancer Research (OICR). Lawson scientists are working with researchers across Ontario to develop other clinical trial protocols that will use 18F-DCFPyL to measure responses to drug treatments and to evaluate men with suspected recurrence of prostate cancer after radiotherapy.

"The goal of these studies it to establish the value of PSMA probes, particularly18F-DCFPyL, and provide evidence to support the use of these probes in routine clinical care," said Dr. Bauman.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New research pinpoints key pathways in prostate cancer's vulnerability to ferroptosis