Biological scientists provide new insight into fundamental aspect of human heart function

NewsGuard 100/100 Score

AN INTERNATIONAL team of scientists have provided new insight into the Frank-Starling mechanism; a fundamental aspect of human heart function.

The Frank-Starling mechanism described more than a century ago by Otto Frank and Ernest Starling - allows the volume of blood entering the heart to precisely match that ejected, because if a larger volume should enter the walls of the heart chambers stretch accordingly.

The stretch causes the heart muscle to contract more forcefully during contraction, increasing the volume of blood ejected; an equilibrium essential for normal heart function.

Biological scientists based in London, Manchester, Salford and Germany have published new data in the scientific journal Nature Communications to explain the precision of this process at a molecular level.

They found that during stretch a group of oxidants called reactive oxygen species (ROS) are produced in the heart muscle, and these activate a muscle contraction protein called activate protein kinase G (PKG). In turn PKG kickstarts molecular movement to change the force of muscle contraction.

The team discovered that one such process was the molecular modification of a cellular protein called SERCA.

Dr David Greensmith, of the biomedical Research centre at the University of Salford, said: "Heart muscle is formed by billions of cells which simultaneously shorten to produce contraction. This shortening is triggered by a rise of calcium which is dependent on SERCA.

"Anything which alters SERCA activity alters the magnitude of calcium rise and so force of contraction."

The molecular modification of SERCA observed in laboratory tests was, they found, the likely cause of altered SERCA activity and thereby provided the process by which the Frank-Starling mechanism is fine-tuned.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Integrating social determinants of health to enhance heart failure risk prediction