Researchers exploring new platform for detecting pathogenic bacteria using bacteriophages

NewsGuard 100/100 Score

Bacterial pathogens pose serious health risks, especially for infants, young children, elderly and those with compromised immune systems. The evolution of drug-resistant bacteria is particularly concerning in the fight against disease. A research team in Canada is exploring a new platform for detecting pathogenic bacteria using bacteriophages, viruses that use bacteria as their host.

During the AVS 63rd International Symposium and Exhibition being held November 6-11, 2016, in Nashville, Tennessee, Stephane Evoy, an applied physicist from the University of Alberta, will explain how the team recognized the limited reliability of antibodies in providing bacteria detection with specificity. Instead they used phage-derived proteins, proteins developed from the bacteria-invading viruses, for detection of pathogenic bacteria to address this deficiency. This work has implications not only in disease diagnosis, but also in food and water safety.

"The high specificity of phages offers a potent alternative for the targeting of pathogens," Evoy said. "More specifically, recombinant phage-receptor-binding proteins (RBPs) responsible for phage-host specificity can be used as biological probes and present numerous advantages over the use of a whole phage."

The study used skim cow milk spiked with different phages or combinations of phages, such as mycobacteria (MAP) and Escherichia coli cells, and a unique process to capture the DNA after incubation. The entire process took less than 24 hours and resulted in significantly better sensitivity of detecting targeted DNA.

"The use of phage-derived proteins in such a manner was quite unique when we started that work back in 2005, but since then the approach thrived, and multinational companies integrated this into their product line," Envoy said. "However, there is still a lot of work to be done in terms of applying the technology to diseases such as tuberculosis and staphylococcus infections."

In addition to demonstrating this capture technique, the research team designed and developed a sophisticated bacteria detector comprised of an array of microresonators, able to enumerate bacteria over a large area and detect the attachment of a single cell anywhere on the array. The devices were prepared with their phage proteins, adding this high specificity of detection to the spatial precision offered by the array design.

"We are looking forward to adapting this technology for the rapid diagnosis of drug-resistant bacteria," Evoy said. "It could go a long way toward make microbial testing methods both more rapid and affordable."

Source:

AVS: Science Array Technology of Materials, Interfaces, and Processing

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Blocking polyphosphates could help treat chronic infections