Researchers find accumulation of tumor suppressor in liver after food withdrawal

NewsGuard 100/100 Score

Tumor suppressors stop healthy cells from becoming cancerous. Researchers from Charité - Universitätsmedizin Berlin, the Medical University of Graz and the German Institute of Human Nutrition in Potsdam-Rehbruecke have found that p53, one of the most important tumor suppressors, accumulates in liver after food withdrawal. They also show that p53 in liver plays a crucial role in the body's metabolic adaptation to starvation. These findings may provide the foundation for the development of new treatment options for patients with metabolic or oncologic disorders. Results of this study have been published in The FASEB Journal.

Previously described as the 'guardian of the genome' and voted 'Molecule of the Year' in 1993, p53 is one of the most important proteins regulating cell growth and a major focus for oncology research. It is a protein that has the ability to interrupt the cell cycle and block the division of diseased cells. In order to better understand its physiological regulation, the researchers around Prof. Dr. Michael Schupp from Charité's Institute of Pharmacology studied the regulation and function of p53 in normal, healthy cells. After withholding food from mice for several hours, the researchers were able to show that p53 protein accumulates in the liver. In order to determine which type of liver cells cause this accumulation, the researchers repeated the experiment using cultured hepatocytes. They found that the starvation-induced accumulation of p53 was indeed detectable in hepatocytes, irrespective of whether these cells were of mouse or human origin.

"Our data also suggest that the accumulation of p53 is mediated by a cellular energy sensor, and that it is crucial for the metabolic changes associated with starvation," explains Prof. Michael Schupp. The researchers were able to show that mice with an acute inactivation of the p53 gene in liver had difficulties in adapting their metabolisms to starvation. "Food intake seems crucial in determining the protein levels of p53 in liver, and p53 also plays an important role in normal liver metabolism," says Prof. Schupp. The researchers are planning to study whether their observations are limited to liver cells, or whether this p53 accumulation also occurs in other tissues and organs. Prof. Schupp concludes: "It would be interesting to conduct further experiments to test whether the starvation-induced accumulation of p53 has an effect on the development of specific forms of cancer, or whether certain ways of timing meals might affect p53 protein levels in such a way as to promote cancer development."

Source:

Charité - Universitätsmedizin Berlin

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Certain progestogens linked to higher brain tumor risk in women, study suggests