Researchers find novel, non-invasive approach for diagnosis and prognosis of prostate cancer

In a new paper in Springer's Journal of Materials Science, researchers at Washington State University report a new approach for the effective capture of tumor-derived exosomes from a prostate cancer cell line. Exosomes are small secreted vesicles that play a key role in intercellular communication and cancer progression.

Developing effective and high-throughput selective capture technology for exosomes bearing the prostate-specific membrane antigen (PSMA) biomarker is critical for early diagnostic and prognostic evaluation of prostate cancer and treatment planning. It is known that the prostate tumor enzyme-biomarker PSMA is highly enriched in exosomes secreted by PSMA+ prostate cancer cells. A novel biofunctionalized silica nanostructure was designed to selectivity capture tumor-derived exosomes through the interaction of a known PSMA ligand with the PSMA on the exosomes.

This work enables a non-invasive approach for diagnosis and prognosis of prostate cancer. It overcomes many of the limitations of alternative approaches that are often ineffective in isolating tumor-derived exosomes from those derived from normal tissue because of the low recovery yields and the time required for the process.

The concept was demonstrated using a single cancer type (i.e., prostate cancer), but based on the data presented in this study, the authors expect that a broad panel of biomarker ligands can be baited on the silica nanostructures to selectively capture biomarker-positive exosomes from an array of cell types. Further advantages of the approach used in this study are the ability to isolate a specific subpopulation of exosomes relying on the expression of a specific surface marker as well as improved exosome recovery rate. In the future, the authors envision a microfluidic flow device that will allow for increased exosome capture efficiency and clinical applications.

Source:

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Finnish researchers discover mechanism behind breast cancer cell reactivation