Hair-derived keratin biomaterials show promise to regenerate skeletal muscle tissue and function

NewsGuard 100/100 Score

Keratin Hydrogels Show Significant Potential to Regenerate Lost Muscle Tissue and Function

The use of human hair-derived keratin biomaterials to regenerate skeletal muscle has shown promise in new research that documents significant increases in both new muscle tissue formation and muscle function among mouse models of volumetric muscle loss. Two new studies that compare muscle regeneration following treatment with keratin hydrogels, no repair, or an alternative tissue matrix are published in in Tissue Engineering, Part A, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The articles are available free on the Tissue Engineering website until May 27, 2017.

In "Cell and Growth Factor-Loaded Keratin Hydrogels for Treatment of Volumetric Muscle Loss (VML) in Mouse Model," Hannah Baker, PhD, Juliana Passipieri, PhD, George Christ, PhD, and coauthors from University Maryland (College Park), University of Virginia (Charlottesville), Wake Forest University and KeraNetics, LLC (Winston-Salem, NC), and Miami University (Oxford, OH) report that mice with an area of substantial muscle mass loss that were treated with keratin hydrogels and growth factors had the best recovery of muscle contraction force. Examination of the affected muscle two months after treatment showed that mice with greater recovery of muscle function also had more extensive new muscle.
In a second study, entitled "Keratin Hydrogel Enhances In Vivo Skeletal Muscle Function in a Rat Model of Volumetric Muscle Loss," Passipieri, Baker, Christ, et al. compared the results of treating a substantial muscle injury in rats using keratin hydrogels with or without growth factors or skeletal muscle progenitor cells versus control animals treated with no repair or an alternative tissue matrix. Keratin hydrogel-treated animals recovered up to 90% of the maximum possible muscle function.
"The authors have identified a novel permissive environment for muscle development in a region of loss." says Tissue Engineering Co-Editor-in-Chief Peter C. Johnson, MD, Principal, MedSurgPI, LLC and President and CEO, Scintellix, LLC, Raleigh, NC. "Further study to identify the optimal application of this technology and its mechanism of action is warranted."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Could vitamin D levels be associated with lower back pain?