Scientists map learning and memory center of fruit fly larva brain

NewsGuard 100/100 Score

A Johns Hopkins University mathematician and computer scientist joined an international team of neuroscientists to create a complete map of the learning and memory center of the fruit fly larva brain, an early step toward mapping how all animal brains work.

In a paper in the current issue of the journal Nature, the team reported on drawing up the map, known as a "connectome."

The project could serve as a guide as scientists work their way up the animal kingdom and eventually chart connections among neurons in the brains of mammals. The part of the fruit fly larva brain used in the study corresponds roughly to the cerebral cortex in mammals.

"Nobody's ever done a complete connectome" before, other than for a roundworm brain with roughly 300 neurons, said Carey E. Priebe, a professor of applied mathematics and statistics in Johns Hopkins' Whiting School of Engineering.

The portion of the fruit fly larva brain mapped in this project includes roughly 1,600 of the 10,000 neurons contained in a larva's entire brain. The adult fruit fly brain comprises roughly 100,000 neurons, and the leap in complexity to mammals is far greater still. At the top of the chain, the human brain contains 86 billion to 100 billion neurons.

For the newly published research, Priebe and Youngser Park, a computer scientist in the Whiting School's Center for Imaging Science, did a statistical analysis of connections among neurons that neuroscientists using electron microscopy had found in the fruit fly larva brain. Priebe and Park were part of a group of 17 scientists from eight research institutions in the United States, the United Kingdom and Germany who took part in this work.

The Priebe and Park analysis reveals patterns of connections among the six types of neurons that had previously been misunderstood or were entirely unknown, contributing to a better understanding of how this portion of the fruit fly larva brain works. The challenge is roughly analogous to sorting out the relationships of all the parts of a complex electrical grid.

The new research focused strictly on the structural connections, leaving aside functional questions of how the connections are associated with particular behaviors. Those questions were taken up in research that Priebe and Park also worked on that was published three years ago in the journal Science. In that case, scientists identified 29 separate fruit fly larva behaviors, including crawling forward and backward, rolling, hunching up, and turning away from specific odors. The two Johns Hopkins researchers then mapped the neurons that trigger those actions.

A few months after that work was published in 2014, Priebe was awarded a two-year $300,000 grant from the National Science Foundation to continue the work on brain circuitry along with neuroscientists from the Howard Hughes Medical Institute's Janelia Research Campus in Virginia. Nine Janelia scientists worked on the new research published in Nature.

The NSF program supports the $100 million BRAIN Initiative launched by then-President Barack Obama in 2013. The effort marshals the work of several agencies to speed the development of new technologies in neuroscience to help researchers understand how the brain works.

While Priebe does not expect to see a complete synapse-level structural connectome for the human brain completed in his lifetime, he said the new work moves the effort a bit further along.

"It is a step," Priebe said. "It's an early step, but it's a step."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
High BMI associated with changes in physiological brain pulsations