UTHealth's Valentin Dragoi wins $1.6 million NIH award to unlock mysteries of the brain

NewsGuard 100/100 Score

Working to further the understanding of how the brain processes information, Valentin Dragoi, Ph.D., of The University of Texas Health Science Center at Houston (UTHealth) has been awarded a three-year, $1.6 million award from the National Institutes of Health's Brain Research through Advancing Innovative Neurotechnologies® (BRAIN) Initiative.

It is Dragoi's third award from the highly competitive federal initiative that was launched in 2013 by former President Barack Obama to accelerate the development of innovative technologies to treat, cure and even prevent brain disorders.

Up to 1 billion people, nearly 1 in 6 of the world's population, suffer from neurological disorders, including Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis, epilepsy, migraine, brain injuries and neuroinfections. An estimated 6.8 million die of the maladies each year, reported the United Nations.

Dragoi's research for the BRAIN project is focused on the parts of the brain responsible for vision (visual cortex) and executive control (prefrontal cortex) and their involvement in social interactions. In particular, Dragoi hopes his research team's findings could help address the social awkwardness experienced by many people with autism.

"Social interactions are believed to represent one of the primary forces driving the evolution of intelligence, and are critical to the health and survival of species," said Dragoi, a professor of neurobiology and anatomy with McGovern Medical School at UTHealth. "However, despite the clear importance of social cognition and learning of advanced social concepts, the underlying neural mechanisms are not understood."

Dragoi's team, which includes Anthony Wright, Ph.D., a professor of neurobiology and anatomy at McGovern Medical School, and Behnaam Aazhang, Ph.D., a professor of electrical and computer engineering at Rice University, plans to monitor the brain activity in four different cortical areas while animals are engaged in social activities. They believe the findings may have mechanistic implications for social interactions in humans.

"Our research has the potential to provide a groundbreaking framework for understanding complex network computations in normal and dysfunctional brain states, including autism, and hence provide alternative solutions to improve mental health," said Dragoi, the holder of the Rochelle and Max Levit Distinguished Professorship in the Neurosciences at McGovern Medical School.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Modified sugar molecules boost stem cell therapy for brain repair after cardiac arrest