Study evaluates placental mesenchymal stem cell sheets for myocardial repair and regeneration

NewsGuard 100/100 Score

The placenta offers an abundant source of placenta-derived mesenchymal stem cells (pMSCs), which a new study has shown can readily form cell sheets that could be implanted in children with congenital heart defects and offer benefits for heart repair and regeneration compared to commonly used synthetic material-based scaffolds. Congenital heart disease is the leading cause of birth-defect-related illness and death. The placenta can be readily collected at birth and the cells harvested for pediatric reparative procedures, as described in the study published in Tissue Engineering, Part A, peer-reviewed journal from Mary Ann Liebert, Inc., publishers.

Sitaram Emani, MD, Breanna Piekarski, RN, and Sirisha Emani, Children's Hospital, Boston, MA and Erin Roberts, Kevin Huang, and Joyce Wong, PhD, Boston University, MA are the coauthors of the article entitled "Evaluation of Placental Mesenchymal Stem Cell Sheets for Myocardial Repair and Regeneration." In the study, the researchers evaluated MSCs independent of their source, demonstrated their ability to form cell sheets, and described other beneficial effects related to paracrine section and cell-cell interactions at the site of MSC implantation. The ability of MSCs to secrete factors to induce cardioprotection, stimulate angiogenesis, and promote migration, proliferation and differentiation of local cardiac stem cells can all affect tissue repair.

"This tremendous work from the Emani Lab at Boston Children's Hospital furthers the effort to establish the use of placenta-derived mesenchymal stem cells in tissue repair.Excitingly, the study demonstrates that undifferentiated placental MSCs support the migration and proliferation of cardiac cells, ultimately establishing a pathway toward cardiac tissue regeneration," says Tissue Engineering Co-Editor-in-ChiefJohn P. Fisher, PhD, Fischell Family Distinguished Professor & Department Chair, and Director of the NIH Center for Engineering Complex Tissues at the University of Maryland.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study reveals long-term consequences of atrial fibrillation