Increasing parent's lifespan improves fitness of offspring

NewsGuard 100/100 Score

Genetic manipulation that more than doubles lifespan also leads to better offspring - according to new collaborative research from the University of East Anglia and Uppsala University.

Researchers studied a gene, known as DAF-2, which is associated with aging in roundworms (Caenorhabditis elegans).

They found that by reducing this gene's expression, they could not only increase the worm's lifespan - but also improve the fitness of its offspring.

It is hoped that the findings could one day help us stay younger and healthier for longer.

Lead researcher Dr Alexei Maklakov, from UEA's School of Biological Sciences, said: "Understanding how and why we age is fundamental to improving quality of life in an increasingly long-lived society.

"It is often thought that we age because of a slow accumulation of unrepaired cellular damage in our bodies, and that aging is the result of energy trade-offs between growth, reproduction and survival.

"But we now know that switching off the function of certain genes in adulthood can increase longevity without a reproduction cost.

"An emerging new theory is that the genes that age us are programmed to make us grow and reproduce in early life, but when their function "runs-on" unabated in later life it starts causing problems.

"If this is true, then we should be able to stay younger for longer by reducing high levels of gene signaling, or 'shutting down' these genes in later life."

DAF-2 is the insulin receptor gene that plays a key role in the insulin/insulin-like growth factor 1 (IFG-1) signaling pathway in roundworms.

The IGF-1 signaling pathway controls an organism's growth, reproduction and longevity, and reduction in IGF-1 signaling increases lifespan in many animals. Because DAF-2 function is important for development and early-life reproduction, the team allowed the worms to develop and reach reproductive maturity before "knocking-down" the gene.

"As expected, we found that the worms lived more than two times longer when IGF-1 signaling that ages them was reduced. Remarkably, we also found that their offspring were fitter and produced more offspring themselves.

"We are really killing two birds with one stone, because we are improving the health and longevity of the parents and the fitness of their offspring.

"This really challenges the classic idea that aging is invariably linked to energy allocation between survival and reproduction.

"Our findings support the emerging view that suboptimal gene expression in adulthood lies at the heart of aging. Essentially, our results show that natural selection optimizes gene expression in early-life but is not sufficiently strong to optimize gene expression in late-life.

"Aging can result from accumulation of unrepaired damage with age. However, it can also result simply from suboptimal regulation of gene expression in late-life.

"Understanding the importance of these two processes is important both for our understanding of the evolution of aging, and for the applied programs aimed at lifespan extension. We want to establish which of the two processes is more prevalent across the tree of life."

Source: http://www.uea.ac.uk/about/-/long-lived-parents-produce-better-quality-offspring

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Rising antibiotic resistance prompts shift to ecological research strategies in infection control