Scientists unmask stem cell identity using gene-sequencing technology

NewsGuard 100/100 Score

Scientists from The University of Queensland's Diamantina Institute have revealed the difference between a stem cell and other blood vessel cells using gene-sequencing technology.

Leading skin cancer and stem cell researcher Professor Kiarash Khosrotehrani said the findings provided evidence of how stem cells express genes that allow them to be identified within a blood vessel.

Until now, we couldn't accurately say how a stem cell differed from the other cells without preconceived ideas.

We hypothesized that stem cells expressed genes that could separate them from other cells inside the blood vessel."

Professor Kiarash Khosrotehrani

UQDI Senior Lecturer Dr Jatin Patel performed the study and looked at every single cell in the largest artery, the aorta, and identified the genes expressed by each cell through sequencing.

"This allowed us to examine every cell without any bias or pre-conceived idea of whether it is a stem cell or not," Dr Patel said.

The study used single-cell RNA sequencing to look at the gene expression of each cell and group common cells together into separate populations.

UQ Institute for Molecular Bioscience Senior Research Officer Dr Sam Lukowski performed the analysis.

"We used specialized algorithms to group cells that express similar sets of genes into clusters," Dr Lukowski explained.

"What we found is that these stem cells form little groups within the blood vessel and that is how you differentiate them from other cells."

Knowing the exact profile of a stem cell will help researchers develop new treatment options for conditions like skin cancer, heart attacks and wound healing.

"This will have an impact on how we treat conditions which are the result of dysfunctional blood vessel behavior," Professor Khosrotehrani said.

"We know that if you can target these stem cells, then you can reduce blood vessel formation and potentially stop diseases like skin cancer metastasis."

Previous research by Professor Khosrotehrani found that stopping the spread of melanoma to other parts of the body might be as simple as cutting off the blood supply to cancer.

"Blood vessels are vital because tumors can't grow without them - they feed the tumors and allow the cancer to spread," he said.

"If you get rid of these stem cells, then the blood vessels don't form, and the tumors don't grow or spread to other locations."

In situations where blood vessels are missing or are clogged, providing more stem cells might generate new blood vessels and allow the supply of oxygen in cardiovascular diseases such as heart attacks, stroke or leg ischemia.

Professor Khosrotehrani had hypothesized this method of stem cell identification and said these findings provided answers to scientific debate.

"We've been working on this type of research for over ten years and the model we've found matches perfectly with our previous findings," he said.

"The availability of the data publicly will allow scientists from all over the world to hopefully end some of the controversy around the identity and definition of these stem cells."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Scientists map all yeast proteins across cell cycle for the first time