Cancer biologists identify important drivers of tumor resistance

NewsGuard 100/100 Score

Cancer biologists at the Mays Cancer Center, home to UT Health San Antonio MD Anderson, have identified important drivers that enable tumors to change their behavior and evade anticancer therapies.

By studying tumors in cell lines, mice and human samples, the team documented genetic signals that promote the conversion of cancer cells from one stage to another. The journal Nature Cell Biology published the research May 18.

Although we focused on breast cancer in this study, we believe the identified mechanism can apply to all treatment-resistant cancers. The same phenomenon is happening in lung cancer, prostate cancer and many other cancers."

Zhijie “Jason” Liu, Ph.D., study senior author, assistant professor of molecular medicine in the Long School of Medicine at UT Health San Antonio

He is a research member of the Mays Cancer Center.

More dangerous

The ability of cancer cells to take different shapes, to grow faster or slower, and to vary in size is called “phenotypic plasticity.” Cancers that acquire plasticity often are more dangerous, becoming metastatic and resistant to many targeted therapies, Dr. Liu said.

The team’s next step is to screen new drugs, in the form of small molecules, that disrupt the genetic signals underlying tumor plasticity. Such a drug could be administered along with current targeted therapies to eliminate the problem of resistance to those treatments, Dr. Liu said.

“If we target the drivers of phenotypic plasticity, we may increase the effectiveness of many therapies and cure more cancers,” Dr. Liu said.

The team is led by Dr. Liu and his long-term collaborator Lizhen Chen, Ph.D., an assistant professor in the Sam and Ann Barshop Institute for Longevity and Aging Studies and the Department of Cell Systems and Anatomy at UT Health San Antonio. They collaborated with researchers in Paris, France, and Shanghai, China, who provided human patient tumor samples for the project.

Source:
Journal reference:

Bi, M., et al. (2020) Enhancer reprogramming driven by high-order assemblies of transcription factors promotes phenotypic plasticity and breast cancer endocrine resistance. Nature Cell Biology. doi.org/10.1038/s41556-020-0514-z.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Breakthrough imaging method enhances precision in prostate cancer treatment