Researchers create a computational model to evaluate drug delivery through inhalers

NewsGuard 100/100 Score

Increased air pollution in recent years has not only contributed to deteriorating environmental conditions in cities across the globe. It has also exacerbated health risks for the people who populate them, particularly those who suffer from pulmonary diseases, such as asthma or chronic obstructive pulmonary disease (COPD). These dynamics underscore the importance of work to increase the efficacy of drug delivery devices, such as inhalers, that administer active pharmaceutical ingredients to treat respiratory illnesses.

In Physics of Fluids, by AIP Publishing, researchers from India and Australia describe the results of their collaboration in developing a computational evaluation of drug delivery through both pressurized metered-dose inhalers and dry powder inhalers to determine how the process can be improved.

While inhalers have revolutionized the treatment of pulmonary diseases in the last few decades and are currently being used to administer drugs to patients infected by the COVID-19 virus, "their efficacy remains a great concern as only one-third of the total drug reaches the affected regions of the lungs," said co-author Suvash C. Saha, from the University of Technology Sydney. "As a result, the drug loss and cost of the treatment become higher."

Knowing an ability to predict aerosolized or powdered drug deposition in the lungs is vital to better understand targeted drug delivery, Saha and colleagues at the Motilal Nehru National Institute of Technology Allahabad, in India, created a computational model to evaluate where improvements can be made.

At higher flow rates, inertial impaction is found to be responsible for deposition of drug particles in the upper portion of the airways but with lesser availability of drug particles in the distal region of the airways. Additionally, at lower flow rates, there is not enough momentum to carry particles to the distal region. As a result, there should be an optimum flow rate [to achieve] maximum reach of drug particles in the distal region."

Akshoy Ranjan Paul, Co-Author

The researchers present a computational investigation of inhalation rates and drug particle sizes in a realistic human lung model. Using computation fluid dynamics, the study reveals that more drug particles are deposited in the right bronchi than in the left bronchi, which is relatively curved due its proximity to the heart. Key findings suggest the drugs should contain smaller-sized particles to enable their reach in the distal bronchi.

The research "is a notable example that demonstrates how the understanding of fluid mechanics, and the power of computational fluid dynamics, can inform more effective design of drugs and drug-administering devices," said Saha.

Source:
Journal reference:

Tiwari, A., et al. (2021) Computational evaluation of drug delivery in human respiratory tract under realistic inhalation. Physics of Fluids. doi.org/10.1063/5.0053980.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Are we eating what's really good for us? New insights into macronutrients and chronic disease