Study identifies Etravirine and Dolutegravir as effective entry inhibitors of wild-type and predominant variants of SARS-CoV-2

In a recent study published in the International Journal of Molecular Sciences, researchers identified drugs inhibiting the entry of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).

Study: Identification of Entry Inhibitors against Delta and Omicron Variants of SARS-CoV-2. Image Credit: Showtime.photo/Shutterstock
Study: Identification of Entry Inhibitors against Delta and Omicron Variants of SARS-CoV-2. Image Credit: Showtime.photo/Shutterstock

Background

SARS-CoV-2 enters host cells by attaching to the angiotensin-converting enzyme 2 (ACE2) receptor through its spike (S) protein. Blocking the interactions between ACE2 and S protein is critical to inhibiting infection. Coronavirus disease 2019 (COVID-19) vaccination has been (mostly) effective in curtailing the infection outbreak. Nevertheless, several variants of concern (VOCs) have emerged, exhibiting significant resistance to the vaccine- or infection-induced immunity. Hence, there is a pressing need to develop broad-spectrum drugs which inhibit the wild-type strain and mutant variants of SARS-CoV-2.

The study and findings

In the present study, researchers developed an assay for detecting the molecular interactions between the S protein’s receptor-binding domain (RBD) and the ACE2 receptor. A drug library was screened to identify potential (entry) inhibitors.

The authors employed the protein complementation technology, i.e., NanoLuc binary technology (NanoBiT), to develop the ACE2-RBD attachment assay. The human ACE2 was fused with the Small BiT (SmBiT) subunit of NanoLuc luciferase, transfected into HeLa cells, and a stable HeLa cell line expressing SmBiT-ACE2 was established. Subsequently, five large BiT (LgBiT)-RBD or S1 subunit fusion constructs were generated.

The recombinant fusion products (LgBiT-RBD, LgBiT-S1) were incubated with the cells expressing SmBiT-ACE2. No luminescence was detected with LgBiT-RBD, LgBiT-S1, and S1-LgBiT fusion constructs, while a robust luminescence signal was observed for the RBD-LgBiT construct. Another (fusion) construct with a linker between RBD and LgBiT (RBD-linker-LgBiT) had no noticeable improvements in the luciferase activity, and subsequent experiments were performed using the RBD-LgBiT construct.

Next, a Food and Drug Administration (FDA)-approved drug library was screened to identify potential drug candidates with inhibitory effects on the attachment of SARS-CoV-2 RBD. Of the 1068 drugs, 16 demonstrated RBD attachment inhibition by over 50%. Negative screening of the top 20 drugs with the highest inhibitory activity using the HiBiT-NanoLuc assay eliminated 11 candidates from further analysis. The nine candidates were Aripiprazole, ABT-199, Dolutegravir Sodium, Etravirine, Gramicidin, Ivermectin, Miconazole, Miconazole Nitrate, and Ospemifene.

A cytotoxic assay was performed on VeroE6 cells using these (nine) candidates, and only three: Dolutegravir, Etravirine, and Sspemifene, were non-toxic. Further, the candidate drugs were subject to the RBD-ACE2 attachment assay, which found Etravirine as the most effective, with a half-maximal effective concentration (EC50) of 2.3 µM. Ivermectin which inhibits SARS-CoV-2 replication in cell cultures exhibited a weak EC50 of 22.8 µM.

Pseudoviruses with SARS-CoV-2 S protein and NanoLuc reporter gene were produced. SmBiT-ACE2 cells were incubated with pseudovirus and candidate inhibitors for six hours, followed by the removal of pseudovirus and continued incubation for 16 hours. Dolutegravir and Etravirine neutralized S-typed pseudoviruses with EC50 values of 40 nM and 5.8 nM, respectively. The neutralization efficiency of the candidates was determined using the plaque reduction neutralization test (PRNT).

The (authentic) SARS-CoV-2 was pre-incubated with the candidate drugs before infecting VeroE6 cells. Neutralization was estimated by quantitating the plaques five days-post infection (dpi). Dolutegravir neutralized SARS-CoV-2 infection with an EC50 of 4.2 µM and Etravirine at 7.7 µM, whereas ivermectin inhibited 60% of infection; the authors presumed that the result might have been biased due to its cytotoxicity.

Molecular docking of Dolutegravir, Etravirine, and Ivermectin on S RBD and ACE2 was carried out. With ACE2-inhibitor(s) docking, the predictive binding sites were not at the RBD interaction interphase, indicating that it was not the primary target of the inhibitors. Unsurprisingly, high affinity was detected between S RBD and inhibitors at the ACE2-S protein interphase. The mean affinity score of Dolutegravir to RBD was -7.52 kilocalories per mole (kcal/mol), and it was -7.8 kcal/mol for Etravirine.

Moreover, when S RBD harboring N501Y substitution was tested, docking results were unaffected. The researchers investigated the neutralization potential of Dolutegravir and Etravirine against pseudoviruses carrying the S protein of Alpha, Beta, Delta, or Omicron VOCs. No significant changes were noted in the EC50 values of the two drugs against SARS-CoV-2 VOCs. Of note was the highly potent neutralization of the Omicron VOC by both the drugs.

Conclusions

The research team identified two potent drugs for inhibiting the entry of SARS-CoV-2 into host cells. Overall, the RBD-ACE2 attachment developed by the researchers is robust and offers attachment results in just 10 minutes without the need for biosafety level (BSL)-2 facilities. The two drugs were effective and inhibited wild-type virus and mutant variants. Since the drugs can be administered orally, the authors posit their use as pre-or post-exposure prophylactic COVID-19 treatment.

Journal reference:
Tarun Sai Lomte

Written by

Tarun Sai Lomte

Tarun is a writer based in Hyderabad, India. He has a Master’s degree in Biotechnology from the University of Hyderabad and is enthusiastic about scientific research. He enjoys reading research papers and literature reviews and is passionate about writing.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Sai Lomte, Tarun. (2022, April 18). Study identifies Etravirine and Dolutegravir as effective entry inhibitors of wild-type and predominant variants of SARS-CoV-2. News-Medical. Retrieved on October 14, 2024 from https://www.news-medical.net/news/20220418/Study-identifies-Etravirine-and-Dolutegravir-as-effective-entry-inhibitors-of-wild-type-and-predominant-variants-of-SARS-CoV-2.aspx.

  • MLA

    Sai Lomte, Tarun. "Study identifies Etravirine and Dolutegravir as effective entry inhibitors of wild-type and predominant variants of SARS-CoV-2". News-Medical. 14 October 2024. <https://www.news-medical.net/news/20220418/Study-identifies-Etravirine-and-Dolutegravir-as-effective-entry-inhibitors-of-wild-type-and-predominant-variants-of-SARS-CoV-2.aspx>.

  • Chicago

    Sai Lomte, Tarun. "Study identifies Etravirine and Dolutegravir as effective entry inhibitors of wild-type and predominant variants of SARS-CoV-2". News-Medical. https://www.news-medical.net/news/20220418/Study-identifies-Etravirine-and-Dolutegravir-as-effective-entry-inhibitors-of-wild-type-and-predominant-variants-of-SARS-CoV-2.aspx. (accessed October 14, 2024).

  • Harvard

    Sai Lomte, Tarun. 2022. Study identifies Etravirine and Dolutegravir as effective entry inhibitors of wild-type and predominant variants of SARS-CoV-2. News-Medical, viewed 14 October 2024, https://www.news-medical.net/news/20220418/Study-identifies-Etravirine-and-Dolutegravir-as-effective-entry-inhibitors-of-wild-type-and-predominant-variants-of-SARS-CoV-2.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Mild COVID-19 disrupts brain connectivity and reduces memory function in adolescents and young adults