Study indicates that cross-reactive immunity against SARS-CoV-2 N protein was present in Africa prior to the pandemic

In a recent study published in Scientific Reports, researchers assessed the pre-existing cross-protective immune responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein and spike (S) protein before the coronavirus disease 2019 (COVID-19) pandemic in individuals residing in North and South America, Europe and Africa in vitro and in vivo.

Study: Cross‑reactive immunity against SARS‑CoV‑2 N protein in Central andWest Africa precedes the COVID‑19 pandemic. Image Credit: Staraldo/Shutterstock
Study: Cross‑reactive immunity against SARS‑CoV‑2 N protein in Central and West Africa precedes the COVID‑19 pandemic. Image Credit: Staraldo/Shutterstock

Background

Researchers initially estimated a high incidence and severity of COVID-19 in the African continent; however, the continent has been relatively spared to date. Several hypotheses have been put forward for explaining the lesser than estimated impact of SARS-CoV-2 infections on the general public health in Africa. However, the role of pre-existing humoral immunity against SARS-CoV-2 needs further investigation.

About the study

In the present study, researchers assessed the pre-existing anti-SARS-CoV-2 S and N titers in sera obtained from residents of North and South America, Europe, and Africa prior to the COVID-19 pandemic (i.e., before November 2019). They also evaluated the neutralization potency and the protective efficacy against the SARS-CoV-2 N protein in vitro and in vivo, respectively.

Anti-SARS-CoV-2 S and N immunoglobulin G (IgG) levels were measured using enzyme-linked immunosorbent assays (ELISA). In addition, anti-SARS-CoV-2 N neutralizing antibodies (nAb) titers were assessed using neutralization assays in vivo among Central Africa donors and in vitro using SARS-CoV-2-infected rodents.

Sera from 121, 43, 146, and 112 individuals from Denmark, Quebec, Gabon (Central Africa), and Brazil were obtained, and anti-BSA (bovine serum albumin) IgG levels were measured with convalescent serum samples from laboratory-confirmed cases of COVID-19 (n=12) from Ontario as positive controls. Further, the team investigated if pre-pandemic cross-protective anti-SARS-CoV-2 immune responses were limited to Gabonese donors, for which, serum samples were obtained from 150 Senegal (West Africa) residents and two confirmed-COVID-19 cases from Senegal before May 2018 were analyzed.

Furthermore, the in vitro SARS-CoV-2 neutralization potency and the in vivo anti-SARS-CoV-2 protective efficacy of Gabonese group sera were tested to investigate if anti-N IgG levels could protect against severe COVID-19. Sera from three confirmed-COVID-19 served as positive controls. Lastly, the ability of humoral antibodies from the Gabon group sera to influence viral load was assessed in SARS-CoV-2-infected human angiotensin-converting enzyme 2 (hACE2) transgenic mice.

The total IgG level in sera of Gabonese donors with or without anti-N antibodies and sera of confirmed-COVID-19 cases (six to eight donors per group) was tested, and pulmonary SARS-CoV-2 titers in mice at five days post-infection (dpi) were evaluated based on the 50% tissue culture infectious dose (TCID50) values.

Results

Anti-SARS-CoV-2 S and anti-SARS-CoV-2 N antibodies were found to be rare across all populations except in Senegal and Gabon, which showed a higher prevalence of anti-SARS-CoV-2 N antibodies. However, the antibodies could not neutralize SARS-CoV-2 in vitro or in vivo. Sera from confirmed cases of COVID-19 and one, two, four, four, and 30 samples from Gabon, Ontario, Denmark, and Brazil showed the presence of anti-BSA IgG titers.

Sera of all COVID-19 patients had detectable anti-S IgG levels whereas anti-S IgG was undetectable or rare in sera obtained from Ontario, Brazil, and Denmark and 10% (n=12) samples from Gabon samples had detectable anti-S IgG levels. However, the anti-S IgG levels were low. On the contrary, high anti-N IgG levels were observed with detectable levels in 82% (n=9) of confirmed COVID-19 cases and 17% (n=20), 12% (n=1), 2.5% (n=3), 3.7% (n=4) and serum samples from Gabon, Ontario, Denmark and Brazil, respectively.

Notably, the anti-N IgG levels were of significantly higher magnitude in Gabon samples in comparison to those from Ontario, Brazil, and Denmark. Unlike in COVID-19 cases, sera from the Gabon group rarely had concomitantly detectable anti-SARS-CoV-2 S antibodies and anti-SARS-CoV-2 N antibodies. In contrast to the Gabon group samples, a large fraction of Senegal group samples had detectable and correlated anti-S IgG and anti-N IgG levels. The findings indicated that the cross-protective anti-SARS-CoV-2 immunity could be due to different immunological mechanisms in Gabon and Senegal residents or due to age-based differences since Senegal residents were younger.

Notably, none of the serum samples obtained from Gabonese donors had detectable anti-S IgG levels. The nAb titers in sera of COVID-19 cases ranged between 320 and 28, whereas no SARS-CoV-2 neutralization (titers below 20) was detected for Gabonese donor samples independent of the absence or presence of anti-N IgG antibodies.

Pulmonary SARS-CoV-2 titers in mock-treated mice were 1.8× 1010 and reduced to 7.4× 103 TCID50/ml on treatment with purified IgG from confirmed COVID-19 cases. Contrastingly, there were no significant differences in pulmonary SARS-CoV-2 titers of mock-treated rodents (1.8× 1010 TCID50/ ml), rodents treated with purified IgG from Gabon group sera with detectable anti-N IgG (1.4× 109 TCID50/ ml) or without detectable anti-N IgG (5.8× 108 TCID50/ ml) and rodents in which commercial anti-N IgG antibodies were administered (3.6× 109 TCID50/ ml).

Conclusion

Overall, the study findings showed that cross-reactive anti-SARS-CoV-2 N immunity was prevalent in Africa before the COVID-19 pandemic. However, the pre-existing immunity does not impact SARS-CoV-2 fitness in mice, indicating that other immunological defense mechanisms may be involved in humans. In Africa, seroprevalence studies against the SARS-CoV-2 N protein may overestimate the circulation of SARS-CoV-2.

Journal reference:
Pooja Toshniwal Paharia

Written by

Pooja Toshniwal Paharia

Dr. based clinical-radiological diagnosis and management of oral lesions and conditions and associated maxillofacial disorders.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Toshniwal Paharia, Pooja Toshniwal Paharia. (2022, August 01). Study indicates that cross-reactive immunity against SARS-CoV-2 N protein was present in Africa prior to the pandemic. News-Medical. Retrieved on October 02, 2022 from https://www.news-medical.net/news/20220801/Study-indicates-that-cross-reactive-immunity-against-SARS-CoV-2-N-protein-was-present-in-Africa-prior-to-the-pandemic.aspx.

  • MLA

    Toshniwal Paharia, Pooja Toshniwal Paharia. "Study indicates that cross-reactive immunity against SARS-CoV-2 N protein was present in Africa prior to the pandemic". News-Medical. 02 October 2022. <https://www.news-medical.net/news/20220801/Study-indicates-that-cross-reactive-immunity-against-SARS-CoV-2-N-protein-was-present-in-Africa-prior-to-the-pandemic.aspx>.

  • Chicago

    Toshniwal Paharia, Pooja Toshniwal Paharia. "Study indicates that cross-reactive immunity against SARS-CoV-2 N protein was present in Africa prior to the pandemic". News-Medical. https://www.news-medical.net/news/20220801/Study-indicates-that-cross-reactive-immunity-against-SARS-CoV-2-N-protein-was-present-in-Africa-prior-to-the-pandemic.aspx. (accessed October 02, 2022).

  • Harvard

    Toshniwal Paharia, Pooja Toshniwal Paharia. 2022. Study indicates that cross-reactive immunity against SARS-CoV-2 N protein was present in Africa prior to the pandemic. News-Medical, viewed 02 October 2022, https://www.news-medical.net/news/20220801/Study-indicates-that-cross-reactive-immunity-against-SARS-CoV-2-N-protein-was-present-in-Africa-prior-to-the-pandemic.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post
You might also like...
Omicron BA.1 breakthrough infection in vaccinated individuals recall memory B cells to confer immunity