Bioprinting combined with AI allows to obtain high-quality homogenized in vitro models

NewsGuard 100/100 Score

In the process of organoid manufacturing, bioprinting technology can not only facilitate the creation and maintenance of complex biological 3D shapes and structures, but also allow for standardization and quality control during production. And the addition of artificial intelligence, which can validate the product potential in the manufacturing process, allows to provide a more standardized source of cells for the organoid in terms of viability, function, etc. In other words, bioprinting combined with artificial intelligence is expected to perform real-time diagnostics of organoids and ultimately obtain high-quality homogenized in vitro models.

Professor Hyungseok Lee, from the Department of Mechanical and Biomedical Engineering at Kangwon National University, presented his views on the future development of organoid manufacturing on May. 6 in Cyborg and Bionic Systems.

Organoids with the ability to self-organize and assemble have a wide range of research and application prospects. Besides the most basic simulation of human organ development that cannot be studied in animal models, organoids can also replicate human pathology instead of animals to complete the research. In addition, because of the convenient customization of cell sources, organoids could also be used as "stand-ins" for clinical patients to personally predict the best therapeutic agents.

However, such a widely used organoid is facing the difficulty of standardizing its production. Due to differences in experimenter, culture conditions, and cellular conditions, the organoid, while enabling disease modeling, cannot exhibit strictly consistent properties for application in the screening of new drugs, especially in the process of quantification. In addition, keeping all nutrients, growth factors and metabolites in constant equilibrium is a technical challenge during organoid growth, which can also cause discrepancies with the actual target tissue.

Bioprinting, especially extrusion bioprinting, enables standardized manufacturing of organoid components with complex cellular composition and structure, controlling quality and minimizing human intervention. Moreover, bioprinting technology could also facilitate the automation of manufacturing processes. High resolution is the critical for bioprinting organoids, which is expected to realize the fabrication of vascularized organoids with perfusion network and overcome the limitation of passive transport of substances.

Artificial intelligence is currently gaining attention for its ability to monitor and control the quality of the final object being exploited. The bioprinting process it incorporates to create organoids monitors cell status and printed structures in real time, providing feedback for fine printing to ensure resolution. The future direction of this kind of organ manufacturing prospects for the modeling of complex diseases and the combinatorial testing of new drugs.

Source:
Journal reference:

Lee, H. (2023). Engineering in vitro models: Bioprinting of Organoids with Artificial-Intelligence. Cyborg and Bionic Systems. doi.org/10.34133/cbsystems.0018.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
GPT-4 matches radiologist accuracy in spotting errors, cuts time and costs dramatically