Towards Zika preparedness: immunogenicity insights from vaccine research

In a recent article published in the Lancet Infectious Diseases, researchers performed a phase I randomized clinical trial between November 7, 2016, and October 30, 2018, in the United States of America (USA) to assess the safety and immunogenicity of an inactivated Zika virus vaccine candidate.

Study: Safety and immunogenicity of a purified inactivated Zika virus vaccine candidate in adults primed with a Japanese encephalitis virus or yellow fever virus vaccine in the USA: a phase 1, randomised, double-blind, placebo-controlled clinical trial. Image Credit: AzriSuratmin/shutterstock.comStudy: Safety and immunogenicity of a purified inactivated Zika virus vaccine candidate in adults primed with a Japanese encephalitis virus or yellow fever virus vaccine in the USA: a phase 1, randomised, double-blind, placebo-controlled clinical trial. Image Credit: AzriSuratmin/


The Walter Reed Army Institute of Research in the United States of America (USA) developed an inactivated and purified whole Zika virus vaccine (ZPIV) after the Zika virus outbreak of 2015-2016 that hit Brazil, Southern and Central America, the southern USA, and the Caribbean.

The Zika virus was endemic in sub-Saharan Africa and the Indian Ocean basin for decades. Much later, scientists discovered that it was a pathogen of public health importance because it caused severe congenital defects and neurological disorders.

Since the Zika virus became a global health priority, there was a need for its vaccine. More importantly, there was a need to assess the safety and immunogenicity of ZPIV among flavivirus-naive participants and those primed with Japanese encephalitis virus and yellow fever vaccines, viz., IXIARO and YF-VAX.

Previous studies have found that flavivirus vaccination or exposure to its heterologous antigens affects immune responses elicited by related flavivirus vaccines, such as ZPIV.

Researchers have studied ZPIV, its immunogenicity, and its safety in non-clinical models.

They also found it immunogenic and well-tolerated in human clinical trials. However, studies have not examined the effect of pre-existing flavivirus immunity on the immune outcomes of adult individuals vaccinated with ZPIV.

About the study

For this phase I, double-blind, placebo-controlled trial, researchers recruited 18 to 49-year-old adults with no previous flavivirus exposure (by infection or vaccination), confirmed by a microneutralization assay. The study cohort did not have pregnant females and individuals with serological evidence of human immunodeficiency virus (HIV), hepatitis B, or hepatitis C infections.

Next, the researchers recruited participants sequentially in a ratio of 1:1:1 to three groups. The first, second, and third group participants received no priming vaccine, two doses of intramuscular IXIARO, and a single subcutaneous YF-VAX dose received 72 to 96 days before the ZPIV shot.

Further, the team randomly assigned participants in all groups in a 4:1 ratio to receive intramuscular ZPIV or placebo, administered two or three times on Days zero and 28. The vaccine comprised 5 μg protein and 500 μg aluminum hydroxide adjuvant, and the placebo was 0·9% sodium chloride solution.

The team analyzed primary study outcomes, i.e., systemic, local adverse events, serious adverse events (SAE), and adverse events of special interest (AESI), in recipients of at least one ZPIV or placebo dose. They assessed solicited adverse events up to seven days post-vaccination and unsolicited adverse events up to day 28 after vaccination.

They also collected blood samples for safety, immunological, and immunogenicity analyses at baseline and one and four weeks after each ZPIV vaccination. The study's secondary outcome was an assessment of neutralizing antibody (nAb) titers post-ZPIV vaccination among participants for whom post-vaccination data was available.

The study follow-up continued for 184 days after the third ZPIV dose, though select participants received it per study protocol and up to 378 days after the second ZPIV dose.

A microneutralization titer of 1:10 or more indicated seropositivity, i.e., Zika virus-specific nAbs and nAbs against yellow fever and Japanese encephalitis viruses, before and after ZPIV vaccination.

Note that the team used a high-throughput microneutralization assay for immunogenicity analyses of the study. The researchers also tested pre- and post-vaccination sera for binding antibody responses post-ZIPV vaccination by an enzyme-linked immunosorbent assay (ELISA). Finally, the team performed cellular immunogenicity assays.

Results and conclusions

Of 134 people screened during the study periods, 75 met the inclusion criteria, of which 40 were female. The authors noted that ZPIV was well-tolerated across all three study groups,

flavivirus naive, IXIARO-primed, and YFVAX-primed groups. Based on one-year follow-up data, it also posed no significant safety issues. 

Notably, ZPIV elicited adequate nAb titers with two doses in volunteers primed with the yellow fever vaccine or Japanese encephalitis vaccine. However, the elicited immune response required three ZPIV doses to remain durable.

Perhaps a recent Flavivirus exposure impaired or delayed immune response to ZPIV, which likely impaired its protective efficacy.

This data provided much-needed insights into the correct number of doses needed for primary vaccination with ZIPV. The study data also showed the effect on patients with recent heterologous flavivirus exposures and the mechanisms governing immunological interplay among related flaviviruses.

However, future studies should explore other mechanisms governing these immune responses so that researchers develop a deeper understanding of flavivirus immunity.

Journal reference:
Neha Mathur

Written by

Neha Mathur

Neha is a digital marketing professional based in Gurugram, India. She has a Master’s degree from the University of Rajasthan with a specialization in Biotechnology in 2008. She has experience in pre-clinical research as part of her research project in The Department of Toxicology at the prestigious Central Drug Research Institute (CDRI), Lucknow, India. She also holds a certification in C++ programming.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Mathur, Neha. (2023, June 30). Towards Zika preparedness: immunogenicity insights from vaccine research. News-Medical. Retrieved on June 22, 2024 from

  • MLA

    Mathur, Neha. "Towards Zika preparedness: immunogenicity insights from vaccine research". News-Medical. 22 June 2024. <>.

  • Chicago

    Mathur, Neha. "Towards Zika preparedness: immunogenicity insights from vaccine research". News-Medical. (accessed June 22, 2024).

  • Harvard

    Mathur, Neha. 2023. Towards Zika preparedness: immunogenicity insights from vaccine research. News-Medical, viewed 22 June 2024,


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Screen time significantly associated with myopia in children, research shows