Fungi used to produce food products have potential probiotic effects on gut inflammation

NewsGuard 100/100 Score

Many fungus strains have been used and selected by the food industry for their capacities to ferment, produce flavors or produce heterologous molecules. According to a new study, 2 fungi used to produce food products have potential probiotic effects on gut inflammation. The study, published in mSystems, a journal of the American Society for Microbiology, demonstrates a possible new way to develop new probiotics.

There is much to learn by studying the role of the fungal strains in the microbiota and host health and also that species simply used in food processes can be the source of new probiotics."

Mathias L. Richard, Ph.D., lead study author, Research Director at INRAE in the Micalis Institute in Jouy-en-Josas, France

To date, very little is known about the diversity of foodborne yeasts and their potential effect on gut microbiota and gut health. Yeasts are microscopic fungi consisting of solitary cells that reproduce by budding. Some have been used for hundreds of years, like Saccharomyces cerevisiae for wine and bread production, or many others for cheese crust production or ripening, like Debaryomyces hansenii.

The researchers conducted the new study because they are working to further knowledge of the potential effect of the fungal microbiota on human health. In this particular study, the idea was to target specifically the fungi that are used by food companies to produce food products (cheeses, charcuterie). "Since our interest is more focused on the role of fungi in gut health and on the development of Inflammatory Bowel Diseases (Crohn's disease and ulcerative colitis), we monitored the effect of these fungi on adapted in vitro and in vivo models," Richard said.

The researchers first selected yeasts that were intensively used in food production and represented a wide range of different yeasts species and then tested them either in simple interaction tests with cultured human cells or in a specific animal model mimicking ulcerative colitis.

They found that in the collection of strains used for food production, some strains can have a beneficial effect on the gut and the host in inflammatory context. They identified 2 strains of yeasts, Cyberlindnera jadinii and Kluyveromyces lactis, that had potential beneficial effects on inflammatory settings in a mouse model of ulcerative colitis. Several additional experiments were performed in an attempt to decipher the mechanism behind these effects. In the case of C. jadinii, the protection seemed to be driven by the modification of the bacterial microbiota after the administration of C. jadinii to the mice, which in turn modified the sensitivity to gut inflammation through a still unknown mechanism.

"These 2 strains have never been specifically described with such beneficial effect, so even if it needs to be studied further, and particularly to see how they are efficient in humans, it is a promising discovery," Richard said.

C. jadinii and K. lactis strains have potential as probiotic yeast strains to fight against inflammation in the gut, but further studies are needed to understand the mechanisms by which these strains act on gut health.

Source:
Journal reference:

Hugot, C., et al. (2023) Cyberlindnera jadinii and Kluyveromyces lactis, two fungi used in food processes, have potential probiotic effects on gut inflammation. mSystems. doi.org/10.1128/msystems.00841-23.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Food additive emulsifiers linked to increased risk of type 2 diabetes