Study explores health benefits of selenium and zinc-enriched eggs

NewsGuard 100/100 Score

In a recent study published in Nutrients, researchers investigated the effect of a diet of selenium- and/or zinc-enriched eggs (SZE) on oxidative stress, cognitive impairment, and intestinal flora in D-galactose-induced aging mice. They found that the SZE diet could reduce organ damage and improve cognitive function in mice models by modulating oxidative stress, inflammation, and gut microbiota.

Study: Selenium- and/or Zinc-Enriched Egg Diet Improves Oxidative Damage and Regulates Gut Microbiota in D-Gal-Induced Aging Mice. Image Credit: Timolina/
Study: Selenium- and/or Zinc-Enriched Egg Diet Improves Oxidative Damage and Regulates Gut Microbiota in D-Gal-Induced Aging Mice. Image Credit: Timolina/


The aging process involves an irreversible structural and functional decline influenced by genetics and the environment. It is characterized by an imbalance in reactive oxygen species (ROS), leading to cellular aging and age-related diseases. The essential trace elements selenium (Se) and zinc (Zn) have shown anti-aging effects linked to their roles in reducing ROS and combating oxidative stress. Although the individual roles and pathways of Se and Zn have been studied in mitigating the effects of aging, their combined effects of Se and Zn remain underexplored.

Eggs, recognized for their high nutritional value, contain essential nutrients like proteins, fatty acids, vitamins, and trace minerals, contributing significantly to the human diet and health. SZE represents an innovative approach to enhance mineral potency, with potential health benefits attributed to active substances like ovalbumin, ovoglobulin, and phosphatide. However, our understanding of SZE's nutritional functions and biological activities is currently limited. Therefore, researchers in the present study aimed to explore the chemical composition of SZE and assess their potential efficacy in mitigating aging-related oxidative stress and inflammation, and promoting gut health in model mice.

About the study

Egg powders were developed from SZE and normal eggs (NE), and their composition was analyzed. Mineral content in the eggs was determined using inductively coupled plasma mass spectrometry (ICP-MS). In the in vivo analysis, 70 male Kunming mice were randomized into seven groups (n = 10 each). The groups were as follows: the control group (Con) was given 0.9% saline, the model group (Mod) given 0.9% saline, the low-dose SZE group (SZLE), the high-dose SZE group (SZHE), the ordinary eggs group (OE), the DL-Selenomenthionine group (SeM), and the ZnSO4 group (ZnSO4). All groups except Con were injected with D-galactose to induce aging.

Maze-based spontaneous alternation and cognitive function tests were conducted on the mice. Blood samples were collected and analyzed for levels of total superoxide dismutase (SOD), malondialdehyde (MDA), alanine transaminase (ALT), aspartate amino transferase (AST), and glutathione peroxidase (GSH-Px) were measured.

After an 8-week intervention, behavioral analysis, fasting, and euthanasia, tissues of the brain, liver, and duodenum, as well as cecum contents, were collected and analyzed. The organ index was calculated as the weight of the organ divided by body weight. Se and Zn content of the organs was measured.

Acetylcholine (Ach), acetylcholinesterase (AChE), and protein concentrations were measured in the brain tissue. Interleukin (IL)-6, IL-1β, and tumor necrosis factor α (TNF-α) levels were measured in the liver tissue using enzyme-linked immunosorbent assay (ELISA). Genomic DNA was extracted from the cecum contents, and the V3-V4 region of the bacterial 16S ribosomal ribonucleic acid (16S rRNA) region was amplified.

Results and discussion

While the moisture, lipid, and ash content were found to be similar in SZE and NE, the protein, sugar, Se, Zn, iron, manganese, molybdenum, magnesium, and phospholipid content of SZE was found to be higher than NE. Total cholesterol and other heavy metals were found to be lower in SZE than NE. Se was majorly enriched in the albumen, while Zn was enriched in the yolk.

In the in vivo analysis, researchers found that although the body weight of mice in Con and Mod groups increased initially, at the end of eight weeks, Mod mice showed reduction in organ index, indicating organ atrophy. This effect was attenuated in the groups SZE, OE, SeM, ZnSO4, SZLE, and SZHE groups.

Se and Zn were majorly enriched in the brains of all the mice, and the levels varied across groups. The Mod group had significantly low levels of SOD and GSH-Px and significantly higher levels of MDA as compared to Con. The alternation rate and dwelling time in the new maze-arm were found to be significantly lower in the Mod groups as compared to Con. As measured by Ach and AChE levels, SZE was found to improve brain dysfunction induced by D-galactose. Similarly, based on interleukin, AST, and ALT levels, SZE intervention was also found to lower D-galactose-induced hepatic impairment and inflammation.

Further, the microbiota of all the groups was found to be very different. SZE helped maintain the balance of intestinal flora by significantly increasing the ratio of Firmicutes and Bacteroidota. The levels of Blautia were found to correlate with inflammatory markers and antioxidant levels.


The findings of the study demonstrate the promising role of SZE diet in mice, alleviating oxidative stress and improving gut microbiota balance. Further research exploring the therapeutic application of SZE diet in humans is warranted.

Journal reference:
Dr. Sushama R. Chaphalkar

Written by

Dr. Sushama R. Chaphalkar

Dr. Sushama R. Chaphalkar is a senior researcher and academician based in Pune, India. She holds a PhD in Microbiology and comes with vast experience in research and education in Biotechnology. In her illustrious career spanning three decades and a half, she held prominent leadership positions in academia and industry. As the Founder-Director of a renowned Biotechnology institute, she worked extensively on high-end research projects of industrial significance, fostering a stronger bond between industry and academia.  


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Chaphalkar, Sushama R.. (2024, February 15). Study explores health benefits of selenium and zinc-enriched eggs. News-Medical. Retrieved on April 17, 2024 from

  • MLA

    Chaphalkar, Sushama R.. "Study explores health benefits of selenium and zinc-enriched eggs". News-Medical. 17 April 2024. <>.

  • Chicago

    Chaphalkar, Sushama R.. "Study explores health benefits of selenium and zinc-enriched eggs". News-Medical. (accessed April 17, 2024).

  • Harvard

    Chaphalkar, Sushama R.. 2024. Study explores health benefits of selenium and zinc-enriched eggs. News-Medical, viewed 17 April 2024,


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
The impact of drinking water quality on mental health and the modifying role of diet