Polyploidy-induced senescence may influence aging and cancer risk

A new editorial was published in Volume 18 of Aging-US on February 8, 2026, titled "Polyploidy-induced senescence: Linking development, differentiation, repair, and (possibly) cancer?"

In this editorial, Iman M. Al-Naggar of the University of Connecticut School of Medicine, UConn Health, and the University of Connecticut Center on Aging, with George A. Kuchel of the University of Connecticut Center on Aging, examines the biological and clinical significance of polyploidy-induced senescence. The authors discuss how this process may contribute to normal tissue development and long-term repair, while also influencing cancer risk. Their perspective centers on the bladder and outlines how aging-related cellular changes may shape tumor initiation.

Aging remains the strongest risk factor for bladder cancer, which is predominantly of urothelial origin. Cellular senescence is defined as a stable growth arrest in which cells remain metabolically active but no longer divide. Polyploidy refers to cells that contain extra copies of their genome. Although polyploidy is frequently associated with cancer, it also occurs in several healthy tissues as part of normal development and adaptation to stress. The editorial highlights increasing evidence that polyploidy and senescence can function together as a coordinated biological program.

The authors focus on bladder umbrella cells, which form the barrier between urine and the bloodstream. In mice, these cells naturally become polyploid early in life and display markers of senescence across the lifespan. Rather than representing dysfunction, this state may help maintain tissue architecture, reinforce barrier integrity, and support resistance to environmental stress. In this context, polyploidy-induced senescence may act as a differentiation program that preserves organ structure.

"Polyploidization and senescence may be interrelated stress responses, yet they have been studied mostly in isolation."

However, this protective mechanism may become unstable. Polyploidy-induced senescence depends on intact tumor suppressor pathways, including regulators such as p16. If these safeguards are lost through mutation, deletion, or epigenetic silencing, polyploid senescent cells may escape growth arrest. Re-entry into the cell cycle under these conditions may promote chromosomal instability and aneuploidy, increasing the likelihood of malignant transformation. The authors propose that a subset of bladder cancers may arise from polyploid umbrella cells that have bypassed this senescent barrier.

The editorial also discusses implications for cancer therapy. Many anticancer treatments induce senescence and polyploidization in tumor cells. Although this approach can initially suppress proliferation, some polyploid cancer cells may later adapt, reduce their ploidy, and resume division, contributing to relapse and treatment resistance. Understanding how polyploidy and senescence interact may therefore inform therapeutic strategies.

Overall, the authors emphasize the need to study polyploidy and senescence together rather than in isolation. Integrating ploidy assessment into large-scale mapping efforts of senescent cells may improve insight into aging biology, tumor initiation, and resistance to therapy.

Source:
Journal reference:

Al-Naggar, I. M., & Kuchel, G. A. (2026). Polyploidy-induced senescence: Linking development, differentiation, repair, and (possibly) cancer? Aging-US. DOI: 10.18632/aging.206355. https://www.aging-us.com/article/206355/text

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Case report examines potential cancer risks after mRNA vaccination