Key mechanism that makes brain cells become tumorous identified

Research identifies mechanism that makes cells become tumorous

Researchers from the Peninsula Medical School in Plymouth (UK), the Memorial Sloan-Kettering Cancer Center in New York, Cornell University in New York, Weil Medical College in New York and the Center for Neural Tumour Research in Los Angeles, have for the first time identified a key mechanism that makes certain cells become tumorous in the brain. The resulting tumours occur most often spontaneously but can also occur in numbers as part of the inherited disease Neurofibromatosis type 2.

The research is published in the highly respected journal, Cell.

The tumours are caused by mutations affecting a protein called Merlin, which in turn causes cancers in a range of cell types including Schwann cells. Schwann cells produce the sheaths that surround and insulate neurons.

The new research investigates for the first time the role of Merlin in the cell nucleus. It explains how Merlin regulates cell proliferation, and how it regulates gene expression. Normally Merlin inhibits the development of tumours at a cell nucleus level - mutations affecting Merlin affect its ability to inhibit. By understanding this mechanism for the first time, the way is open for the development of effective therapies for a condition in which no treatment other than surgery exists.

In neurofibromatosis 2 the sheer number of the tumours can overwhelm a patient, often leading to severe disability and eventually death. Patients can suffer from 20 to 30 tumours at any one time, and the condition typically affects older children and young adults.

No therapy, other than invasive (radio)surgery aiming at a single tumour and which may not eradicate the full extent of the tumours, exists.

The condition of multiple tumours , neurofibromatosis type two (NF2), affects one in every 2,500 people worldwide. It can affect any family, regardless of past history, through gene mutation and currently there is no cure.

Professor Oliver Hanemann, who led the research from the Peninsula Medical School, commented: "This has been an exciting collaboration with colleagues in the United States resulting in a landmark publication. Until now, there has been no meaningful work on the role of Merlin in the nucleus. The results of our research show a greater understanding of the fundamental part played by Merlin in the repression of tumorous cells, and how this part is undermined when the protein is mutated. Identification of the difference in mechanisms will allow us to develop therapies for the future."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New study shows brain waves can be manipulated during REM sleep