TG2 protein is a key mediator in Porphyromonas gingivalis infection, study finds

May provide insight to help prevent disease

Scientists at Forsyth, along with a colleague from Northwestern University, have discovered that the protein, Transgultaminase 2 (TG2), is a key component in the process of gum disease. TG2 is widely distributed inside and outside of human cells. The scientists found that blocking some associations of TG2 prevents the bacteria Porphyromonas gingivalis (PG) from adhering to cells. This insight may one day help lead to novel therapies to prevent gum disease caused by PG.

Periodontal, or gum, disease is one of the most common infectious diseases. In its more severe forms, such as periodontitis, it causes loss of the bone that supports the teeth. Approximately 65 million adults in the United States are affected by some form of the disease. PG is the major causative agent of periodontitis, and it may also be involved in the development of systemic diseases such as atherosclerosis and rheumatoid arthritis.

The findings in this study indicate that TG2 is a key mediator in Porphyromonas gingivalis infection. In this research, the scientific team examined the critical role that TG2 plays in enabling Porphyromonas gingivalis to adhere to cells. Using confocal microscopes, clusters of TG2 were found where the bacterium was binding to cells. When the team silenced the expression of TG2, Porphyromonas gingivalis was diminished.

This study, which will be published in Proceedings of the National Academy of Sciences on March 24, 2014, was led by Dr. Heike Boisvert, Assistant Member of the Staff, Department of Microbiology at Forsyth. The work was done in collaboration with Dr. Laszlo Lorand from Northwestern University Feinberg Medical School and Dr. Margaret Duncan, Senior Member of Staff at The Forsyth Institute.

"Once established, Porphyromonas gingivalis is very hard to get rid of" said Boisvert. "The bacterium changes conditions in the surrounding environment to ensure perfect growth; unfortunately, those changes, if untreated, can result in a loss of supportive tissue for our teeth. Also, as has been recently reported, manipulations of host proteins by PG may be involved in the development of systemic diseases such as atherosclerosis and rheumatoid arthritis. The more we know about the relationship of PG with us, the host, the better we can work on how to prevent disease and disease progression. " In the next phase of research, Boisvert will be examining TG2-knockout mice to test their susceptibility to Porphyromonas gingivalis infection and periodontal disease.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Advanced microscopy reveals how ribosomes attach to mRNA for protein synthesis