Researchers identify new therapeutic target for treating most common form of eye cancer

NewsGuard 100/100 Score

Researchers at the University of California, San Diego School of Medicine have identified a therapeutic target for treating the most common form of eye cancer in adults. They have also, in experiments with mice, been able to slow eye tumor growth with an existing FDA-approved drug.

The findings are published online in the May 29 issue of the journal Cancer Cell.

"The beauty of our study is its simplicity," said Kun-Liang Guan, PhD, professor of pharmacology at UC San Diego Moores Cancer Center and co-author of the study. "The genetics of this cancer are very simple and our results have clear implications for therapeutic treatments for the disease."

The researchers looked specifically at uveal melanoma. Uveal collectively refers to parts of the eye, notably the iris, that contain pigment cells. As with melanoma skin cancer, uveal melanoma is a malignancy of these melanin-producing cells.

Approximately 2,000 people in the United States are diagnosed with uveal melanoma each year. If the cancer is restricted to just the eye, the standard treatment is radiation and surgical removal of the eye. But uveal melanoma often spreads to the liver, and determining the metastatic status of the disease can be difficult. In cases of uveal melanoma metastasis, patients typically succumb within two to eight months after diagnosis.

Scientists have long suspected a genetic association with uveal melanoma because one of two gene mutations is present in approximately 70 percent of all tumors. Until this study, however, they had not identified a mechanism that could explain why and how these mutations actually caused tumors.

The work by Guan and colleagues unravels the causal relationship between the genetic mutations and tumor formation, and identifies a molecular pathway along which drugs might counterattack.

The two genes implicated - GNAQ and GNA11 - code for proteins (known as G proteins) that normally function as molecular on-off switches, regulating the passage of information from the outside to the inside of a cell.

In their experiments, the scientists showed that mutations in these genes shift the G proteins to a permanent "on" or active status, which results in over-activation the Yes-associated protein (YAP). The activation of the YAP protein induces uncontrolled cell growth and inhibits cell death, causing malignancies.

Earlier research by other scientists has shown that the drug verteporfin, used to treat abnormal blood vessel formation in the eye, acts on the YAP pathway inhibiting the protein's YAP function.

In experiments with mice, the UC San Diego-led team showed that verteporfin also suppresses the growth of uveal melanoma tumors derived from human tumors.

"We have a cancer that is caused by a very simple genetic mechanism," Guan said. "And we have a drug that works on this mechanism. The clinical applications are very direct."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Rare variants in the YKT6 gene cause new neurological disorder, study finds