USPTO issues Cardio3 BioSciences Notice of Allowance for patent covering CAR-expressing TCR-deficient T-Cells

NewsGuard 100/100 Score

Fundamental IP has potential broad applicability for development of internal and external allogeneic CAR therapies

Cardio3 BioSciences (C3BS) (Euronext Brussels and Paris: CARD), a leader in engineered cell therapies with clinical programs initially targeting indications in cardiovascular disease and oncology, today announced that it has received a Notice of Allowance from the U.S. Patent and Trademark Office (USPTO) for a significant patent application covering T-Cell receptor (TCR)-deficient T-Cells which are engineered to express a chimeric antigen receptor (CAR). This patent application is the first allowed application in a series of filed patent applications augmenting the Company’s protection for its allogeneic T-Cell technology. The Company has applied for additional patents related to this technology, which are in various phases of USPTO review.

Allogeneic technology has the potential to optimize CAR T-Cell cancer immunotherapies by enabling the manufacturing of off-the-shelf cell products for the treatment of patients without the need for a genetic match.

The allowed patent application complements and directly strengthens Cardio3 BioSciences’ intellectual property portfolio in the CAR T-Cell field. The claims of the allowed application broadly cover isolated TCR-deficient T-Cells (those lacking functional TCRs), which have been further engineered to express a non-TCR receptor, i.e., a ligand binding moiety attached to an immune signalling moiety. We believe the allowed claims will provide valuable protection for the Company as they are not limited to specific methods of generating allogeneic T-Cells, such as genome editing and genetic engineering. The Company believes that this allowed patent application will be an important element of an IP portfolio covering development of allogeneic CAR T-Cells and their use in various immunotherapies.

This allowed patent application, U.S. Application No. 13/502,978, is part of a larger patent portfolio owned by Dartmouth College and exclusively in-licensed by Cardio3 BioSciences through its acquisition of OnCyte, announced on January 6, 2015.

Dr. Christian Homsy, CEO of Cardio3 BioSciences, commented:

We are extremely pleased to have received the Notice of Allowance from the USPTO for this patent application for TCR-deficient T-Cells engineered to express a CAR, and we are actively pursuing coverage in other countries. To our knowledge, this patent application is the first allowed application regarding TCR-deficient T-Cells suitable for use in allogeneic T-Cell therapies, and we are not aware of any other technology in development for the manufacture of allogeneic T-Cells. Furthermore, the patent provides broad protection because it is not limited to specific methods of generating allogeneic T-Cells, such as genome editing and genetic engineering.

Dr. Homsy continued:

Our allogeneic T-Cell platform constitutes a high value asset in our portfolio and we look forward to continuing the development of this platform, for which we expect to have our first T-Cell allogeneic CAR T-Cells entering the clinic in late 2016 or early 2017. We believe that with the acquisition of OnCyte, we have the right technology to enter this highly competitive and promising field.

Cardio3 BioSciences’ pipeline includes autologous CAR T-Cell therapies that have the potential to target a broad range of solid tumours and blood cancers. The Company’s lead oncology product, CAR-NKG2D, is an autologous therapy expected to enter a Phase I clinical trial in certain hematologic cancers in the second quarter of 2015, which follows the receipt by OnCyte of an Investigational New Drug (IND) clearance from the U.S. Food and Drug Administration (FDA) in July 2014.

The Company’s allogeneic T-Cell platform has the potential for broad-based application, as it not only applies to the Company’s CAR product candidates, but can also be applied to generate allogeneic CAR T-Cell therapies from external CAR technologies that are currently in development.

Dr. Charles Sentman, Professor of Microbiology and Immunology and Director, Center for Synthetic Immunity, Geisel School of Medicine, Dartmouth College, and lead developer of Cardio3 BioSciences’ allogeneic CAR T-Cell platform technology, remarked:

In developing this allogeneic CAR T-Cell platform, we address a significant unmet medical need by enabling the potential manufacturing of off-the-shelf, ready-to-use immunotherapy cells for the treatment of many cancer patients. In addition, this technology is applicable to both existing and new CAR therapies, meaning that current autologous therapies may be converted to allogeneic treatments and manufactured for broad use.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Discovery of new vascular cell type may pave way for novel strategies to treat cardiovascular diseases