Taiwanese scientists propose advanced solution that can be applied to thermal cancer therapy

NewsGuard 100/100 Score

Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors

Precise targeting biological molecules, such as cancer cells, for treatment is a challenge, due to their sheer size. Now, Taiwanese scientists have proposed an advanced solution, based on a novel combination of previously used techniques, which can potentially be applied to thermal cancer therapy. Pei-Chang Tsai from the Institute of Atomic and Molecular Sciences, at the Academia Sinica, Taipei, and colleagues just published in EPJ QT an improved sensing technique for nanometre-scale heating and temperature sensing. Using a chemical method to attach gold nanorods to the surface of a diamond nanocrystal, the authors have invented a new biocompatible nanodevice. It is capable of delivering extremely localised heating from a near-infrared laser aimed at the gold nanorods, while accurately sensing temperature with the nanocrystals.

The authors' lab specialises in fabricating bright fluorescent diamond nanocrystals. The paticularity of these nanocrystals is that they contain a high concentration of punctual colour centre defects. When exposed to green light, these centres emit a red fluorescent light, useful for sub-cellular imaging applications. Unlike ordinary fluorescent material, these centres can also be turned into hypersensitive nanoprobes to detect temperature and magnetic field, via optical manipulation and detection.

By introducing gold nanoparticles to the nanocrystal, the authors make it possible to convert the incoming laser light into extremely localised heat. These gold nanoparticles can therefore act as switchable nanoheaters for therapies based on delivering intense and precise heat to cancerous cells, using a laser as the energy source. The novelty of this study is that it shows that it is possible to use diamond nanocrystals as hypersensitive temperature sensors with a high spatial resolution - ranging from 10 to 100 nanometers - to monitor the amount of heat delivered to cancer cells.

Source:

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New AI tool 'TORCH' successfully identifies cancer origins in unknown primary cases