New technique could make tissue regeneration cheaper and safer for transplant patients

NewsGuard 100/100 Score

A new technique developed by a UBC researcher could make tissue regeneration cheaper and safer for health-care systems and their patients.

A study, conducted by UBC researcher Keekyoung Kim while at Harvard University, has identified new ways in which proteins and various biological molecules--known as growth factors--can work together to turn cells on the surface into cells that form the middle layer of the heart valve.

"Science has long been working towards ways to minimize or eliminate the rejection risks faced by tissue transplant patient," says Keekyoung Kim, assistant professor of engineering at UBC's Okanagan campus. "While the goal of using a patient's own genetic material to grow a body tissue is still a long way off, this study has moved us further towards that goal.

"This new technique essentially allows us to use less material to study heart-valve regeneration process more quickly and at a lower cost."

As part of his study, Kim used a microarray (technology that allows various groups of microscopic materials to be "printed" on a slide) to place proteins, growth-influencing biological molecules and simple cells in various combinations on top of a gel-like substance, known as hydrogel.

Kim then looked at which combinations influenced the transition of a simple cell into a more complex cell used in heart-valve growth. He found there were specific patterns of proteins and molecules that promoted growth.

"We're confident this process can be used for other types of tissue, so we are currently in the process of building a microarray in the Okanagan so we can continue testing," he says.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
DELiVR's virtual reality training speeds up cell detection in complex brain datasets